Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Soil C, N, and P stocks evaluation under major land uses on China’s Loess Plateau(Society for Range Management, 1/03/2017) Chen X; Hou F; Matthew C; He XZLoess Plateau covers 640 000 km2 in the central northern China. Despite a semiarid environment, harsh winters, and hot summers, agriculture has been practiced in this region for > 5 000 yr, and the food production systems are among China's oldest. The environment is fragile because the loessial soils are prone to erosion. Sound scientific information is therefore required to underpin future land use planning in the region. To this end, total soil organic carbon (SOC), N, and P stocks were measured in Huanxian County of the wider Loess Plateau, representing five major land use categories. Sites were sampled three times over 3 yr. In all, almost 2 800 soil analyses were performed. A feature of these soils is low SOC content in the A horizon but comparatively small decline with soil depth. For example, SOC levels for the 0-20 cm and 70-100 cmsoil depths averaged 6.1 and 4.1Mg ha-1, respectively. Alfalfa and rangeland sites had 5.1 Mg ha-1 (10%) more total than cropland and 7.5 t ha-1 (16%) more total SOC to 100-cm soil depth than the two silvopastoral sites. For total soil N (0- to 100-cm soil depth) the averages of alfalfa and RL siteswere 20% and 28%, respectively, higher than the cropland and silvopastoral site group means, although soil C, N, and P levels are very low, relative to those of typical soils elsewhere. When these observations are scaled up to a regional level, it can be calculated that a 5% shift in land use from cropping or silvopastoral systems to alfalfa-based systems could increase soil C sequestration by as many as 20 million t CO2 per yr, although some caution is needed in making extrapolations, as the present data are from a single locality on the Loess Plateau.Item Different effects of grazing and nitrogen addition on ecosystem multifunctionality are driven by changes in plant resource stoichiometry in a typical steppe(5/08/2022) Li L; He XZ; Zhang X; Hu J; Wang M; Wang Z; Hou FPurpose: Herbivore grazing and nitrogen (N) input may alter the multiple ecosystem functions (i.e., multifunctionality, hereafter) associated with carbon (C), N, and phosphorus (P) cycling. Most studies on variations in plant diversity, soil biotic or abiotic factors, and linkages to ecosystem functions have focused on grazing or N enrichment alone. Few studies have combined these two factors to explore the role of plant resource stoichiometry (C:N:P ratios) in ecosystem multifunctionality (EMF) control. Here, we evaluated the direct and indirect effects of stocking rate (0, 2.7, 5.3, and 8.7 sheep ha− 1) and N addition rate (0, 5, 10, and 20 g N m− 2 yr− 1) on a range of ecosystem functions and EMF via changing plant diversity, soil pH and plant resource stoichiometry in a typical steppe on the Loess Plateau. Results: We found that increasing stocking rate and interaction between grazing and N addition significantly decreased EMF, while increasing N addition rate significantly promoted EMF. Grazing decreased soil NH4+-N, soil NO3−-N, aboveground biomass, and plant C, N, and P pools, but increased soil total N and P at 8.7 and 5.3 sheep ha− 1, respectively. N addition increased soil NH4+-N, NO3−-N, and total P. Plant aboveground biomass, and plant C, N, and P pools increased at the lower N addition rate (≤ 5 g N m− 2 yr− 1) under grazing. The structural equation models indicated that (1) EMF was driven by the direct effects of grazing and the indirect effects of grazing on plant resource stoichiometry and soil pH; (2) EMF increased with increasing N addition rates, but such positive response of EMF to increasing N addition rates was alleviated at high levels of plant resource stoichiometry and diversity; and (3) the indirect effects of plant diversity induced by grazing and N addition had moderate effects on EMF via the variations of plant resource stoichiometry. Conclusions: This study demonstrated grazing and N addition had contrasting effects on ecosystem multifunctionality in a typical steppe, and highlighted the capacity of plant diversity in balancing plant elements that serve as a key mechanism in the maintenance of EMF in response to intensive grazing and N enrichment.

