Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
7 results
Search Results
Item Interaction between Rumen Epithelial miRNAs-Microbiota-Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep.(MDPI (Basel, Switzerland), 2023-09-23) Lv W; Sha Y; Liu X; He Y; Hu J; Wang J; Li S; Guo X; Shao P; Zhao F; Li M; Freking BTibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.Item Synergistic Responses of Tibetan Sheep Rumen Microbiota, Metabolites, and the Host to the Plateau Environment.(MDPI (Basel, Switzerland), 2023-10-03) Sha Y; Guo X; He Y; Li W; Liu X; Zhao S; Hu J; Wang J; Li S; Zhao Z; Hao Z; Miccheli A; Docea AO; Fukui HPlateau adaptation in animals involves genetic mechanisms as well as coevolutionary mechanisms of the microbiota and metabolome of the animal. Therefore, the characteristics of the rumen microbiome and metabolome, transcriptome, and serum metabolome of Tibetan sheep at different altitudes (4500 m, 3500 m, and 2500 m) were analyzed. The results showed that the rumen differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and carbohydrate metabolism, and there was a significant correlation with microbiota. The differentially expressed genes and metabolites at middle and high altitudes were coenriched in asthma, arachidonic acid metabolism, and butanoate and propanoate metabolism. In addition, the serum differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and metabolism of xenobiotics by cytochrome P450, and they were also related to microbiota. Further analysis revealed that rumen metabolites accounted for 7.65% of serum metabolites. These common metabolites were mainly enriched in metabolic pathways and were significantly correlated with host genes (p < 0.05). This study found that microbiota, metabolites, and epithelial genes were coenriched in pathways related to lipid metabolism, energy metabolism, and immune metabolism, which may be involved in the regulation of Tibetan sheep adaptation to plateau environmental changes.Item Rumen Epithelial Development- and Metabolism-Related Genes Regulate Their Micromorphology and VFAs Mediating Plateau Adaptability at Different Ages in Tibetan Sheep.(MDPI (Basel, Switzerland), 2022-12-16) Sha Y; He Y; Liu X; Zhao S; Hu J; Wang J; Li S; Li W; Shi B; Hao Z; Martinez-Pastor FThe rumen is an important hallmark organ of ruminants and plays an important role in the metabolism and immune barrier of Tibetan sheep on the Plateau. However, there are few studies on rumen development and metabolism regulation in Tibetan sheep at different ages. Here, we comprehensively analyzed the immune function, fermentation function, rumen epithelial micromorphology and transcriptome profile of Tibetan sheep at different ages. The results showed that the concentration of IgG decreased and the concentration of IgM increased with age (p < 0.05), and the highest concentration of IgA was observed at 1.5 and 3.5 years of age. In terms of rumen fermentation characteristics, VFAs of 4-month-old lambs were the highest, followed by VFAs and NH3-N of Tibetan sheep at 3.5 years of age. Hematoxylin-eosin staining and transmission electron microscopy section examination of rumen epithelial tissue showed that the rumen papilla width increased with age (p < 0.001), the thickness of the stratum corneum decreased, the cells in the stratum corneum showed accelerated migration and the thickness of the rumen muscle layer increased (p < 0.001). Desmosomal junctions between the layers of rumen epithelium increased at 1.5 and 3.5 years old, forming a compact barrier structure, and the basal layer had more mitochondria involved in the regulation of energy metabolism. RNA-seq analysis revealed that a total of 1006 differentially expressed genes (DEGs) were identified at four ages. The DEGs of Tibetan sheep aged 4 months and 6 years were mainly enriched in the oxidation−reduction process and ISG15-protein conjugation pathway. The 1.5 and 3.5-year-olds were mainly enriched in skeletal muscle thin filament assembly, mesenchyme migration and the tight junction pathway. WGCNA showed that DEGs related to rumen microbiota metabolite VFAs and epithelial morphology were enriched in “Metabolism of xenobiotics by cytochrome P450, PPAR signaling pathway, Butanoate metabolism pathways” and participated in the regulation of rumen epithelial immune and fermentation metabolism functions of Tibetan sheep at different ages. This study systematically revealed the regulatory mechanism of rumen epithelial development and metabolism in the plateau adaptation of Tibetan sheep, providing a new approach for the study of plateau adaptation.Item Study of the Interactions between Muscle Fatty Acid Composition, Meat Quality-Related Genes and the Ileum Microbiota in Tibetan Sheep at Different Ages.(MDPI (Basel, Switzerland), 2024-02-23) Wang F; Sha Y; Liu X; He Y; Hu J; Wang J; Li S; Shao P; Chen X; Yang W; Chen Q; Gao M; Huang W; Panea BThe intestinal microbiota of ruminants is an important factor affecting animal production and health. Research on the association mechanism between the intestinal microbiota and meat quality of ruminants will play a positive role in understanding the formation mechanism of meat quality in ruminants and improving production efficiency. In this study, the fatty acid composition and content, expression of related genes, and structural characteristics of the ileum microbiota of ewes of Tibetan sheep at different ages (4 months, 1.5 years, 3.5 years, and 6 years) were detected and analyzed. The results revealed significant differences in fatty acid composition and content in the muscle of Tibetan sheep at different ages (p < 0.05); in addition, the content of MUFAs in the longissimus dorsi muscle and leg muscle was higher. Similarly, the expressions of muscle-related genes differed among the different age groups, and the expression of the LPL, SCD, and FABP4 genes was higher in the 1.5-year-old group. The ileum microbiota diversity was higher in the 1.5-year-old group, the Romboutsia abundance ratio was significantly higher in the 1.5-year-old group (p < 0.05), and there was a significant positive correlation with oleic acid (C18:1n9c) (p < 0.05). In conclusion, the content of beneficial fatty acids in the longissimus dorsi muscle and leg muscle of Tibetan sheep was higher at 1.5 years of age, and the best slaughter age was 1.5 years. This study provides a reference for in-depth research on the mechanism of the influence of the gut microbiota on meat quality and related regulation.Item Multi-omics revealed rumen microbiota metabolism and host immune regulation in Tibetan sheep of different ages(Frontiers Media S.A., 2024-02-13) Sha Y; Liu X; He Y; Zhao S; Hu J; Wang J; Li W; Shao P; Wang F; Chen X; Yang W; Xie Z; Chen ZThe rumen microbiota and metabolites play an important role in energy metabolism and immune regulation of the host. However, the regulatory mechanism of rumen microbiota and metabolite interactions with host on Tibetan sheep's plateau adaptability is still unclear. We analyzed the ruminal microbiome and metabolome, host transcriptome and serum metabolome characteristics of Tibetan sheep at different ages. Biomarkers Butyrivibrio, Lachnospiraceae_XPB1014_group, Prevotella, and Rikenellaceae_RC9_gut_group were found in 4 months, 1.5 years, 3.5 years, and 6 years Tibetan sheep, respectively. The rumen microbial metabolites were mainly enriched in galactose metabolism, unsaturated fatty acid biosynthesis and fatty acid degradation pathways, and had significant correlation with microbiota. These metabolites further interact with mRNA, and are co-enriched in arginine and proline metabolism, metabolism of xenobiotics by cytochrome P450, propanoate metabolism, starch and sucrose metabolism, gap junction pathway. Meanwhile, serum metabolites also have a similar function, such as chemical carcinogenesis - reactive oxygen species, limonene and pinene degradation, and cutin, suberine and wax biosynthesis, thus participating in the regulation of the body's immune and energy-related metabolic processes. This study systematically revealed that rumen microbiota, metabolites, mRNA and serum metabolites of Tibetan sheep were involved in the regulation of fermentation metabolic function and immune level of Tibetan sheep at different ages, which provided a new perspective for plateau adaptability research of Tibetan sheep at different ages.Item Supplementation with Astragalus Root Powder Promotes Rumen Microbiota Density and Metabolome Interactions in Lambs(MDPI (Basel, Switzerland), 2024-03-02) Shao P; Sha Y; Liu X; He Y; Wang F; Hu J; Wang J; Li S; Chen X; Yang W; Chen Q; Gao MThe gut microbiota is highly symbiotic with the host, and the microbiota and its metabolites are essential for regulating host health and physiological functions. Astragalus, as a feed additive, can improve animal immunity. However, the effects of Astragalus root powder on the rumen microbiota and their metabolites in lambs are not apparent. In this study, thirty healthy Hu sheep lambs with similar body weights (17.42 ± 2.02 kg) were randomly selected for the feeding experiment. Lambs were fed diets supplemented with 0.3% Astragalus root powder, and the rumen microbiota density and metabolome were measured to determine the effects of Astragalus on the health of lambs in the rumen. The results showed that the relative abundance of Butyrivibrio fibrisolvens (Bf), Ruminococcus flavefaciens (Rf), Succiniclasticum (Su), and Prevotella (Pr) in the rumen was increased in the Astragalus group (p < 0.01), and metabolic profiling showed that the metabolites, such as L-lyrosine and L-leucine, were upregulated in the Astragalus group (p < 0.01). KEGG functional annotation revealed that upregulated metabolites were mainly enriched in the pathways of amino acid metabolism, lipid metabolism, fatty acid biosynthesis, and bile secretion in the Astragalus group, and downregulated metabolites were enriched in the pathways of methane metabolism and other pathways. Correlation analysis revealed that butyric acid was positively correlated with Roseburia and Blautia (p < 0.05) and negatively correlated with Desulfovibrio (p < 0.05). Thus, by analyzing the interactions of Astragalus root powder with the density of rumen microorganisms and their metabolites in lambs, it was shown that Astragalus root powder could improve the structure of rumen microbiota and their metabolites and then participate in the regulation of amino acid metabolism, lipid metabolism, immune metabolism, and other pathways to improve the efficiency of energy absorption of the lambs.Item Different effects of grazing and nitrogen addition on ecosystem multifunctionality are driven by changes in plant resource stoichiometry in a typical steppe(5/08/2022) Li L; He XZ; Zhang X; Hu J; Wang M; Wang Z; Hou FPurpose: Herbivore grazing and nitrogen (N) input may alter the multiple ecosystem functions (i.e., multifunctionality, hereafter) associated with carbon (C), N, and phosphorus (P) cycling. Most studies on variations in plant diversity, soil biotic or abiotic factors, and linkages to ecosystem functions have focused on grazing or N enrichment alone. Few studies have combined these two factors to explore the role of plant resource stoichiometry (C:N:P ratios) in ecosystem multifunctionality (EMF) control. Here, we evaluated the direct and indirect effects of stocking rate (0, 2.7, 5.3, and 8.7 sheep ha− 1) and N addition rate (0, 5, 10, and 20 g N m− 2 yr− 1) on a range of ecosystem functions and EMF via changing plant diversity, soil pH and plant resource stoichiometry in a typical steppe on the Loess Plateau. Results: We found that increasing stocking rate and interaction between grazing and N addition significantly decreased EMF, while increasing N addition rate significantly promoted EMF. Grazing decreased soil NH4+-N, soil NO3−-N, aboveground biomass, and plant C, N, and P pools, but increased soil total N and P at 8.7 and 5.3 sheep ha− 1, respectively. N addition increased soil NH4+-N, NO3−-N, and total P. Plant aboveground biomass, and plant C, N, and P pools increased at the lower N addition rate (≤ 5 g N m− 2 yr− 1) under grazing. The structural equation models indicated that (1) EMF was driven by the direct effects of grazing and the indirect effects of grazing on plant resource stoichiometry and soil pH; (2) EMF increased with increasing N addition rates, but such positive response of EMF to increasing N addition rates was alleviated at high levels of plant resource stoichiometry and diversity; and (3) the indirect effects of plant diversity induced by grazing and N addition had moderate effects on EMF via the variations of plant resource stoichiometry. Conclusions: This study demonstrated grazing and N addition had contrasting effects on ecosystem multifunctionality in a typical steppe, and highlighted the capacity of plant diversity in balancing plant elements that serve as a key mechanism in the maintenance of EMF in response to intensive grazing and N enrichment.
