Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Hierarchical graph learning with convolutional network for brain disease prediction
    (Springer Nature, 2024-10-23) Liu T; Liu F; Wan Y; Hu R; Zhu Y; Li L
    In computer-aided diagnostic systems, the functional connectome approach has become a common method for detecting neurological disorders. However, the existing methods either ignore the uniqueness of different subjects across the functional connectivities or neglect the commonality of the same disease for the functional connectivity of each subject, resulting in a lack of capacity of capturing a comprehensive functional model. To solve the issues, we develop a hierarchical graph learning with convolutional network that not only considers the unique information of each subject, but also takes the common information across subjects into account. Specifically, the proposed method consists of two structures, one is the individual graph model which selects the representative brain regions by combining each subject feature and its related brain region-based graph. The other is the population graph model to directly conduct classification performance by updating the information of each subject which considers both the subject itself and the nearest neighbours. Experimental results indicate that the proposed method on four real datasets outperforms the state-of-the-art approaches.
  • Item
    Completed sample correlations and feature dependency-based unsupervised feature selection
    (Springer Science+Business Media, LLC, 2023-04) Liu T; Hu R; Zhu Y
    Sample correlations and feature relations are two pieces of information that are needed to be considered in the unsupervised feature selection, as labels are missing to guide model construction. Thus, we design a novel unsupervised feature selection scheme, in this paper, via considering the completed sample correlations and feature dependencies in a unified framework. Specifically, self-representation dependencies and graph construction are conducted to preserve and select the important neighbors for each sample in a comprehensive way. Besides, mutual information and sparse learning are designed to consider the correlations between features and to remove the informative features, respectively. Moreover, various constraints are constructed to automatically obtain the number of important neighbors and to conduct graph partition for the clustering task. Finally, we test the proposed method and verify the effectiveness and the robustness on eight data sets, comparing with nine state-of-the-art approaches with regard to three evaluation metrics for the clustering task.