Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Copper induces nitrification by ammonia-oxidizing bacteria and archaea in pastoral soils
    (Wiley, 12/12/2022) Matse D; Jeyakumar P; Bishop P; Anderson C
    Copper (Cu) is the main co-factor in the functioning of the ammonia monooxygenase (AMO) enzyme, which is responsible for the first step of ammonia oxidation. We report a greenhouse-based pot experiment that examines the response of ammonia-oxidizing bacteria and archaea (AOB and AOA) to different bioavailable Cu concentrations in three pastoral soils (Recent, Pallic, and Pumice soils) planted with ryegrass (Lolium perenne L.). Five treatments were used: control (no urine and Cu), urine only at 300 mg N kg-1 soil (Cu0), urine + 1 mg Cu kg-1 soil (Cu1), urine + 10 mg Cu kg-1 soil (Cu10), and urine + 100 mg Cu kg-1 soil (Cu100). Pots were destructively sampled at Day 0, 1, 7, 15, and 25 after urine application. The AOB/AOA amoA gene abundance was analyzed by real-time quantitative polymerase chain reaction at Days 1 and 15. The AOB amoA gene abundance increased 10.0- and 22.6-fold in the Recent soil and 2.1- and 2.5-fold in the Pallic soil for the Cu10 compared with Cu0 on Days 1 and 15, respectively. In contrast, the Cu100 was associated with a reduction in AOB amoA gene abundance in the Recent and Pallic soils but not in the Pumice soil. This may be due to the influence of soil cation exchange capacity differences on the bioavailable Cu. Bioavailable Cu in the Recent and Pallic soils influenced nitrification and AOB amoA gene abundance, as evidenced by the strong positive correlation between bioavailable Cu, nitrification, and AOB amoA. However, bioavailable Cu did not influence the nitrification and AOA amoA gene abundance increase.
  • Item
    Crawfish shell- and Chinese banyan branch-derived biochars reduced phytoavailability of As and Pb and altered community composition of bacteria in a contaminated arable soil.
    (20/03/2023) Gu S; Yang X; Chen H; Jeyakumar P; Chen J; Wang H
    Globally, soil contamination with arsenic (As) and lead (Pb) has become a severe environmental issue. Herein, a pot experiment was conducted using pak choi (Brassica chinensis L.) to investigate the effects of biochars derived from crawfish (Procambarus clarkia) shells (CSB) and Chinese banyan (Ficus microcarpa) branches (CBB) on the phytoavailability of As and Pb, and bacterial community composition in soils. Our results showed that the application of CSB and CBB decreased the concentrations of DTPA-extractable Pb in soils ranging from 26.8 % to 28.8 %, whereas CSB increased the concentration of NH4H2PO4-extractable As in soils, compared to the control. Application of both biochars reduced the uptake of As and Pb in the edible part of pak choi. In addition, application of CBB significantly (P < 0.05) increased the activities of α-glucosidase, β-glucosidase, cellobiohydrolase, and acid phosphomonoesterase by 55.0 %, 54.4 %, 195.1 %, and 76.7 %, respectively, compared to the control. High-throughput sequencing analysis revealed that the predominant bacteria at the phyla level in both biochar-treated soils were Firmicutes, Proteobacteria, and Actinobacteriota. Redundancy and correlation analyses showed that the changes in bacterial community composition could be related to soil organic carbon content, As availability, and nutrient availability in soils. Overall, the Chinese banyan branch biochar was more suitable than the crawfish shell biochar as a potential amendment for the remediation of soils co-contaminated with As and Pb.
  • Item
    Enhanced removal of arsenic and cadmium from contaminated soils using a soluble humic substance coupled with chemical reductant.
    (1/03/2023) Wei J; Tu C; Xia F; Yang L; Chen Q; Chen Y; Deng S; Yuan G; Wang H; Jeyakumar P; Bhatnagar A
    Soil washing is an efficient, economical, and green remediation technology for removing several heavy metal (loid)s from contaminated industrial sites. The extraction of green and efficient washing agents from low-cost feedback is crucially important. In this study, a soluble humic substance (HS) extracted from leonardite was first tested to wash soils (red soil, fluvo-aquic soil, and black soil) heavily contaminated with arsenic (As) and cadmium (Cd). A D-optimal mixture design was investigated to optimize the washing parameters. The optimum removal efficiencies of As and Cd by single HS washing were found to be 52.58%-60.20% and 58.52%-86.69%, respectively. Furthermore, a two-step sequential washing with chemical reductant NH2OH•HCl coupled with HS (NH2OH•HCl + HS) was performed to improve the removal efficiency of As and Cd. The two-step sequential washing significantly enhanced the removal of As and Cd to 75.25%-81.53% and 64.53%-97.64%, which makes the residual As and Cd in soil below the risk control standards for construction land. The two-step sequential washing also effectively controlled the mobility and bioavailability of residual As and Cd. However, the activities of soil catalase and urease significantly decreased after the NH2OH•HCl + HS washing. Follow-up measures such as soil neutralization could be applied to relieve and restore the soil enzyme activity. In general, the two-step sequential soil washing with NH2OH•HCl + HS is a fast and efficient method for simultaneously removing high content of As and Cd from contaminated soils.
  • Item
    Nitrification rate in dairy cattle urine patches can be inhibited by changing soil bioavailable Cu concentration
    (Elsevier, 17/01/2023) Matse D; Jeyakumar P; Bishop P; Anderson C
    Ammonia oxidation to hydroxylamine is catalyzed by the ammonia monooxygenase enzyme and copper (Cu) is a key element for this process. We investigated the effect of soil bioavailable Cu changes induced through the application of Cu-complexing compounds on nitrification rate, ammonia-oxidizing bacteria (AOB) and archaea (AOA) amoA gene abundance, and mineral nitrogen (N) leaching in urine patches using the Manawatu Recent soil. Further, evaluated the combination of organic compound calcium lignosulphonate (LS) with a growth stimulant Gibberellic acid (GA). Treatments were applied in May 2021 as late-autumn treatments: control (no urine), urine-only at 600 kg N ha-1, urine + dicyandiamide (DCD), urine + co-poly-acrylic-maleic acid (PA-MA), urine + LS, urine + split-application of LS (2LS), and urine + combination of GA plus LS (GA + LS). In addition, another four treatments were applied in July 2021 as mid-winter treatments: control, urine-only at 600 kg N ha-1, urine + GA, and urine + GA + LS. Soil bioavailable Cu and mineral N leaching were examined during the experimental period. The AOB/AOA amoA genes were quantified using quantitative polymerase chain reaction. Changes in soil bioavailable Cu across treatments correlated with nitrification rate and AOB amoA abundance in late-autumn while the AOA amoA abundance did not change. The reduction in soil bioavailable Cu induced by the PA-MA and 2LS was linked to significant (P < 0.05) reduction in mineral N leaching of 16 and 30%, respectively, relative to the urine-only. The LS did not induce a significant effect on either bioavailable Cu or mineral N leaching relative to urine-only. The GA + LS reduced mineral N leaching by 10% relative to LS in late-autumn, however, there was no significant effect in mid-winter. This study demonstrated that reducing soil bioavailable Cu can be a potential strategy to reduce N leaching from urine patches.