Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Post-natal development of EEG responses to noxious stimulation in pigs (Sus scrofa) aged 1-15 days
    (Ingenta on behalf of the Universities Federation for Animal Welfare (UFAW), 1/08/2019) Kells NJ; Beausoleil NJ; Sutherland MA; Johnson CB
    This study examined electroencephalographic (EEG) indices of acute nociception in pigs (Sus scrofa) aged 1, 5, 7, 10, 12 and 15 days, post-natal. Ten pigs per age were anaesthetised with halothane in oxygen and maintained at a light plane of anaesthesia. EEG was recorded bilaterally using a five-electrode montage. Following a 10-min baseline period, tails were docked using side-cutter pliers and recording continued for a further 5 min. Changes in the median frequency (F50), 95% spectral edge frequency (F95) and total power (PTOT) of the EEG were used to assess nociception. Tail-docking at one day of age induced no significant changes in the EEG spectrum. A typical nociceptive response, characterised by an increase in F50 and decrease in PTOT, was evident at ten days of age, with five and seven day old pigs exhibiting responses in either F50 or PTOT only. Pooling of data into ≤ 7 days of age and > 7 days of age revealed F50 was higher overall in the older group. Whilst PTOT decreased after docking in both groups, this response was larger and more prolonged in the older group. F95 increased after docking in the older pigs only. Overall, these data provide evidence of an increase in cortical responsiveness to noxious stimulation with increasing post-natal age, suggesting there may be qualitative differences in pain perception between age groups. Further, the data provide some support for current recommendations that tail-docking and other painful husbandry procedures be performed within seven days of birth in order to minimise their impact on animal welfare.
  • Item
    Effects of halothane on the electroencephalogram of the chicken
    (John Wiley and Sons, Ltd, 15/05/2018) McIlhone AE; Beausoleil NJ; Kells NJ; Johnson CB; Mellor DJ
    Little is known about the effects of inhalant anaesthetics on the avian electroencephalogram (EEG). The effects of halothane on the avian EEG are of interest, as this agent has been widely used to study nociception and analgesia in mammals. The objective of this study was to characterize the effects of halothane anaesthesia on the EEG of the chicken. Twelve female Hyline Brown chickens aged 8-10 weeks were anaesthetized with halothane in oxygen. For each bird, anaesthesia was progressively increased from 1-1.5 to 2 times the Minimum Anesthetic Concentration (MAC), then progressively decreased again. At each concentration, a sample of EEG was recorded after a 10-min stabilization period. The mean Total Power (PTOT ), Median Frequency (F50) and 95% Spectral Edge Frequency (F95) were calculated at each halothane MAC, along with the Burst Suppression Ratio (BSR). Burst suppression was rare and BSR did not differ between halothane concentrations. Increasing halothane concentration from 1 to 2 MAC resulted in a decrease in F50 and increase in PTOT , while F95 increased when MAC was reduced from 1.5 to 1. The results indicate dose-dependent spectral EEG changes consistent with deepening anaesthesia in response to increasing halothane MAC. As burst suppression was rare, even at 1.5 or 2 times MAC, halothane may be a suitable anaesthetic agent for use in future studies exploring EEG activity in anaesthetized birds.