Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Genetic and phenotypic relationships between ewe reproductive performance and wool and growth traits in Uruguayan Ultrafine Merino sheep.(Oxford University Press on behalf of the American Society of Animal Science, 2023-03-07) Ramos Z; Garrick DJ; Blair HT; De Barbieri I; Ciappesoni G; Montossi F; Kenyon PRThis study reports genetic parameters for yearling and adult wool and growth traits, and ewe reproductive performance. Data were sourced from an Uruguayan Merino flock involved in a long-term selection program focused on reduced fiber diameter (FD), and increased clean fleece weight (CFW) and live weight (LW). Pedigree and performance data from approximately 5,700 mixed-sex yearling lambs and 2,000 mixed-age ewes born between 1999 and 2019 were analyzed. The number of records ranged from 1,267 to 5,738 for yearling traits, and from 1,931 to 7,079 for ewe productive and reproductive performance. Data on yearling and adult wool traits, LW and body condition score (BCS), yearling eye muscle area (Y_EMA), and fat thickness (Y_FAT), and several reproduction traits were analyzed. The genetic relationships between FD and reproduction traits were not different from zero. Moderate unfavorable genetic correlations were found between adult CFW and ewe lifetime reproduction traits (-0.34 ± 0.08 and -0.33 ± 0.09 for the total number of lambs weaned and total lamb LW at weaning, respectively). There were moderate to strong positive genetic correlations between yearling LW and all reproduction traits other than ewe-rearing ability (-0.08 ± 0.11) and pregnancy rate (0.18 ± 0.08). The genetic correlations between Y_EMA and reproduction traits were positive and ranged from 0.15 to 0.49. Moderate unfavorable genetic correlations were observed between yearling FD and Y_FAT and between adult FD and BCS at mating (0.31 ± 0.12 and 0.23 ± 0.07, respectively). The genetic correlations between adult fleece weight and ewe BCS at different stages of the cycle were negative, but generally not different from zero. This study shows that selection for reduced FD is unlikely to have any effect on reproduction traits. Selection for increased yearling LW and Y_EMA will improve ewe reproductive performance. On the other hand, selection for increased adult CFW will reduce ewe reproductive performance, whereas selection for reduced FD will negatively impact body fat levels. Although unfavorable genetic relationships between wool traits and both FAT and ewe reproductive performance existed, simultaneous improvements in the traits would occur using appropriately designed indexes.Item Identification of risk factors for ewe mortality during the pregnancy and lambing period in extensively managed flocks(BioMed Central Ltd, 2023-12-06) Flay KJ; Chen AS; Yang DA; Kenyon PR; Ridler ALBACKGROUND: Ewe mortality during pregnancy and lambing is an issue for sheep producers globally, resulting in reduced productivity and profitability, compromised ewe welfare, and poor consumer perception. Despite these negative consequences, there was little investigation into factors associated with ewe death during this time. Therefore, this study aimed to assess associations between ewe body condition score (BCS), weight, reproductive parameters, and risk of mortality during pregnancy and lambing. METHODS: Four cohorts from three commercial New Zealand farms participated, with 13,142 ewe lambs enrolled and followed over time. Data were collected for five consecutive lambings. Visits aligned with key on-farm management times, specifically: prior to breeding, at pregnancy diagnosis (PD), prior to lambing (set-stocking), and, at weaning of their lambs. At each visit, ewes were weighed, BCS assessed and reproductive status was recorded when relevant (litter size at PD and lactation status after lambing). Ewes that died or were culled were recorded, and any ewes that were absent from consecutive visits were presumed dead. Logistic regressions were developed to assess the relationship between weight and BCS at each visit, PD result (single or multiple-bearing) and lactation status (wet or dry) in each year, and, risk of mortality during the pregnancy and lambing period in each year. RESULTS: In the PD to weaning period, mortality incidence ranged from 6.3 to 6.9% for two-tooth (18-months-old at breeding) to mixed-age (54-months-old at breeding) ewes. For ewe lambs (7 to 8-months-old at breeding), mortality was 7.3% from set-stocking to weaning. Heavier ewe lambs at PD were less likely to die during lambing (OR: 0.978, p = 0.013), as were those with greater set-stocking BCS. In subsequent years, BCS was a predictor of ewe death, with odds of mortality greatest for ewes < BCS 2.5. Additionally, for poorer BCS ewes, increasing weight reduced risk of mortality, but there was no impact of increasing weight in greater BCS ewes. CONCLUSIONS: This study identified risk factors associated with ewe mortality during the pregnancy and lambing period. Flock owners can use these to either cull at-risk ewes or proactively intervene to reduce likelihood of mortality, thereby improving flock productivity, profitability and welfare.Item Genomic Regions Associated with Wool, Growth and Reproduction Traits in Uruguayan Merino Sheep(MDPI (Basel, Switzerland), 2023-01-07) Ramos Z; Garrick DJ; Blair HT; Vera B; Ciappesoni G; Kenyon PRThe aim of this study was to identify genomic regions and genes associated with the fiber diameter (FD), clean fleece weight (CFW), live weight (LW), body condition score (BCS), pregnancy rate (PR) and lambing potential (LP) of Uruguayan Merino sheep. Phenotypic records of approximately 2000 mixed-age ewes were obtained from a Merino nucleus flock. Genome-wide association studies were performed utilizing single-step Bayesian analysis. For wool traits, a total of 35 genomic windows surpassed the significance threshold (PVE ≥ 0.25%). The proportion of the total additive genetic variance explained by those windows was 4.85 and 9.06% for FD and CFW, respectively. There were 42 windows significantly associated with LWM, which collectively explained 43.2% of the additive genetic variance. For BCS, 22 relevant windows accounted for more than 40% of the additive genetic variance, whereas for the reproduction traits, 53 genomic windows (24 and 29 for PR and LP, respectively) reached the suggestive threshold of 0.25% of the PVE. Within the top 10 windows for each trait, we identified several genes showing potential associations with the wool (e.g., IGF-1, TGFB2R, PRKCA), live weight (e.g., CAST, LAP3, MED28, HERC6), body condition score (e.g., CDH10, TMC2, SIRPA, CPXM1) or reproduction traits (e.g., ADCY1, LEPR, GHR, LPAR2) of the mixed-age ewes.
