Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
6 results
Search Results
Item Canis Familiaris Papillomavirus Type 26: A Novel Papillomavirus of Dogs and the First Canine Papillomavirus within the Omegapapillomavirus Genus.(MDPI (Basel, Switzerland), 2024-04-12) Munday JS; Bond SD; Piripi S; Soulsby SJ; Knox MA; Christensen NDomestic dogs are currently recognized as being infected by 25 different canine papillomavirus (CPV) types classified into three genera. A short sequence from a novel CPV type was amplified, along with CPV1, from a papilloma (wart) from the mouth of a dog. The entire 7499 bp genome was amplified, and CPV26 contained putative coding regions that were predicted to produce four early proteins and two late ones. The ORF L1 showed less than 62% similarity for all previously sequenced CPV types but over 69% similarity to multiple Omegapapillomavirus types from a variety of Caniform species including the giant panda, Weddel seal, and polar bear. Phylogenetic analysis confirmed CPV26 clusters within the Omegapapillomavirus genus. Specific primers were used to investigate the presence of CPV26 DNA within a series of 37 canine proliferative lesions. CPV26 DNA was amplified from one lesion, a cutaneous papilloma that also contained CPV6. This is the first time a PV type within the Omegapapillomavirus genus has been detected in a non-domestic species and this provides evidence that the omegapapillomaviruses infected a common ancestor of, and then co-evolved with, the Caniform species. Whether CPV26 causes disease is uncertain, but the absence of an E7 protein may suggest low pathogenicity.Item Historical translocations by Māori may explain the distribution and genetic structure of a threatened surf clam in Aotearoa (New Zealand)(Springer Nature Ltd, 2018-11-22) Ross PM; Knox MA; Smith S; Smith H; Williams J; Hogg IDThe population genetic structure of toheroa (Paphies ventricosa), an Aotearoa (New Zealand) endemic surf clam, was assessed to determine levels of inter-population connectivity and test hypotheses regarding life history, habitat distribution and connectivity in coastal vs. estuarine taxa. Ninety-eight toheroa from populations across the length of New Zealand were sequenced for the mitochondrial cytochrome c oxidase I gene with analyses suggesting a population genetic structure unique among New Zealand marine invertebrates. Toheroa genetic diversity was high in Te Ika-a Māui (the North Island of New Zealand) but completely lacking in the south of Te Waipounamu (the South Island), an indication of recent isolation. Changes in habitat availability, long distance dispersal events or translocation of toheroa to southern New Zealand by Māori could explain the observed geographic distribution of toheroa and their genetic diversity. Given that early-Māori and their ancestors, were adept at food cultivation and relocation, the toheroa translocation hypothesis is plausible and may explain the disjointed modern distribution of this species. Translocation would also explain the limited success in restoring what may in some cases be ecologically isolated populations located outside their natural distributions and preferred nichesItem Abundant dsRNA picobirnaviruses show little geographic or host association in terrestrial systems.(Elsevier, 2023-08) Knox MA; Wierenga J; Biggs PJ; Gedye K; Almeida V; Hall R; Kalema-Zikusoka G; Rubanga S; Ngabirano A; Valdivia-Granda W; Hayman DTSPicobirnaviruses are double-stranded RNA viruses known from a wide range of host species and locations but with unknown pathogenicity and host relationships. Here, we examined the diversity of picobirnaviruses from cattle and gorillas within and around Bwindi Impenetrable Forest National Park (BIFNP), Uganda, where wild and domesticated animals and humans live in relatively close contact. We use metagenomic sequencing with bioinformatic analyses to examine genetic diversity. We compared our findings to global Picobirnavirus diversity using clustering-based analyses. Picobirnavirus diversity at Bwindi was high, with 14 near-complete RdRp and 15 capsid protein sequences, and 497 new partial viral sequences recovered from 44 gorilla samples and 664 from 16 cattle samples. Sequences were distributed throughout a phylogenetic tree of globally derived picobirnaviruses. The relationship with Picobirnavirus diversity and host taxonomy follows a similar pattern to the global dataset, generally lacking pattern with either host or geography.Item Genomic Characterisation of Canis Familiaris Papillomavirus Type 24, a Novel Papillomavirus Associated with Extensive Pigmented Plaque Formation in a Pug Dog(MDPI (Basel, Switzerland), 2022-10-26) Munday JS; Gedye K; Knox MA; Ravens P; Lin X; Dalianis TNumerous large dark plaques developed over the ventrum, legs and head of a 9-year-old pug dog over a 4-year-period. Histology confirmed a diagnosis of viral pigmented plaque and a short section of a novel papillomavirus (PV) type was amplified using consensus PCR primers. Taking advantage of the circular nature of PV DNA, 'outward facing' PCR primers allowed amplification of the full sequence. As this is the 24th PV known to infect dogs, the novel PV was designated canine papillomavirus (CPV) type 24. The CPV24 genome contained putative coding regions for 5 early proteins and 2 late ones. The CPV24 open reading frame L1 showed the highest (78.2%) similarity to CPV4 and phylogenetic analysis showed that CPV24 clustered with CPV4 and CPV16 suggesting CPV24 is the third species 2 Chipapillomavirus type identified in dogs. This is the third report of extensive pigmented plaques covering a high proportion of the skin. Both previous cases were caused CPV4 and, considering the high genetic similarity between CPV4 and CP24, infection by these CPV types may predispose to more severe clinical disease. In addition, as plaques caused by CPV16 appear more likely to progress to neoplasia, the detection of a species 2 Chipapillomavirus within a pigmented plaque may indicate the potential for more severe disease.Item Absence of Cryptosporidium hominis and dominance of zoonotic Cryptosporidium species in patients after Covid-19 restrictions in Auckland, New Zealand(Cambridge University Press, 2021-09) Knox MA; Garcia-R JC; Ogbuigwe P; Pita A; Velathanthiri N; Hayman DTSCoronavirus disease-2019 (Covid-19) nonpharmaceutical interventions have proven effective control measures for a range of respiratory illnesses throughout the world. These measures, which include isolation, stringent border controls, physical distancing and improved hygiene also have effects on other human pathogens, including parasitic enteric diseases such as cryptosporidiosis. Cryptosporidium infections in humans are almost entirely caused by two species: C. hominis, which is primarily transmitted from human to human, and Cryptosporidium parvum, which is mainly zoonotic. By monitoring Cryptosporidium species and subtype families in human cases of cryptosporidiosis before and after the introduction of Covid-19 control measures in New Zealand, we found C. hominis was completely absent after the first months of 2020 and has remained so until the beginning of 2021. Nevertheless, C. parvum has followed its typical transmission pattern and continues to be widely reported. We conclude that ~7 weeks of isolation during level 3 and 4 lockdown period interrupted the human to human transmission of C. hominis leaving only the primarily zoonotic transmission pathway used by C. parvum. Secondary anthroponotic transmission of C. parvum remains possible among close contacts of zoonotic cases. Ongoing 14-day quarantine measures for new arrivals to New Zealand have likely suppressed new incursions of C. hominis from overseas. Our findings suggest that C. hominis may be controlled or even eradicated through nonpharmaceutical interventions.Item Community health and human-animal contacts on the edges of Bwindi Impenetrable National Park, Uganda(PLOS, 2021-11-24) Muylaert RL; Davidson B; Ngabirano A; Kalema-Zikusoka G; MacGregor H; Lloyd-Smith JO; Fayaz A; Knox MA; Hayman DTS; Fèvre ECross-species transmission of pathogens is intimately linked to human and environmental health. With limited healthcare and challenging living conditions, people living in poverty may be particularly susceptible to endemic and emerging diseases. Similarly, wildlife is impacted by human influences, including pathogen sharing, especially for species in close contact with people and domesticated animals. Here we investigate human and animal contacts and human health in a community living around the Bwindi Impenetrable National Park (BINP), Uganda. We used contact and health survey data to identify opportunities for cross-species pathogen transmission, focusing mostly on people and the endangered mountain gorilla. We conducted a survey with background questions and self-reported diaries to investigate 100 participants' health, such as symptoms and behaviours, and contact patterns, including direct contacts and sightings over a week. Contacts were revealed through networks, including humans, domestic, peri-domestic, and wild animal groups for 1) contacts seen in the week of background questionnaire completion, and 2) contacts seen during the diary week. Participants frequently felt unwell during the study, reporting from one to 10 disease symptoms at different intensity levels, with severe symptoms comprising 6.4% of the diary records and tiredness and headaches the most common symptoms. After human-human contacts, direct contact with livestock and peri-domestic animals were the most common. The contact networks were moderately connected and revealed a preference in contacts within the same taxon and within their taxa groups. Sightings of wildlife were much more common than touching. However, despite contact with wildlife being the rarest of all contact types, one direct contact with a gorilla with a timeline including concerning participant health symptoms was reported. When considering all interaction types, gorillas mostly exhibited intra-species contact, but were found to interact with five other species, including people and domestic animals. Our findings reveal a local human population with recurrent symptoms of illness in a location with intense exposure to factors that can increase pathogen transmission, such as direct contact with domestic and wild animals and proximity among animal species. Despite significant biases and study limitations, the information generated here can guide future studies, such as models for disease spread and One Health interventions.
