Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item Investigating the effect of prophylactic claw trimming on the interval between calving and first observed elevated locomotion score in pasture-based dairy cows.(Taylor and Francis Group, 2023-11-01) Werema CW; Hoekstra F; Laven LJ; Müller KR; Gifford D; Laven RAAIMS: To evaluate, in a pasture-based dairy herd, the response to a three-time point hoof trimming regime on lameness incidence and time from calving to observation of an elevated locomotion score (LS). METHODS: This study was conducted on a 940-cow spring-calving herd in New Zealand's North Island between May 2018 and May 2019. Cows (n = 250) were randomly allocated to the hoof trimming group, with the remainder assigned to the non-trim cohort. One trained professional hoof trimmer used the five-step Dutch method to trim the hind feet of the trimming group. Throughout the subsequent production season, the whole herd was locomotion-scored fortnightly using the 4-point (0-3) Dairy NZ lameness score. Kaplan-Meier survival curves were used to assess the univariable effect of trimming on the interval between calving and first LS of ≥ 2 and first LS ≥ 1. A multivariable Cox proportional hazards regression was used to further evaluate the effect of trimming on time to elevated LS. RESULTS: Mean lameness (LS ≥ 2) prevalence was 2.6%, with 30% of cows having ≥ 4 observations during the study period when at least one LS was ≥ 2. For LS ≥ 1, mean prevalence was 40%, with 98.6% of cows having ≥ 4 observations during the study period when at least one LS was ≥ 1 during lactation. Hoof trimming had no apparent effect on the incidence of clinical lameness (LS ≥ 2) (trimmed vs. non-trimmed: 33.2% vs. 28.8%, respectively), but for LS ≥ 1, there was a small decrease in the incidence of LS ≥ 1 (trimmed vs. non-trimmed: 96.9% vs. 99.3%, respectively). The hazard of a cow having a first observed LS ≥ 2 in the control group was 0.87 (95% CI = 0.66-1.14) times that of the trimmed group; however, the hazard of a cow having a first LS ≥ 1 was 1.60 (95% CI = 1.37-1.88) times higher in the control than in the trimmed group. CONCLUSION AND CLINICAL RELEVANCE: On this farm, prophylactic hoof trimming had no clinically relevant impact on the incidence of clinical lameness and was not associated with clinically beneficial reductions in time to first observed LS ≥ 2. This may be because claw horn imbalance was not pronounced on this farm, with 53% of cows needing no trim on either hind limb on the first trimming occasion. Further research on the response to prophylactic trimming in pasture-based dairy cattle is required.Item The transfer of passive immunity in calves born at pasture(Elsevier Inc and the Federation of Animal Science Societies Inc on behalf of the American Dairy Science Association, 2022-07) Mason WA; Cuttance EL; Laven RACalf and dam separation is an area of growing public interest, and timely separation is also a practical challenge for pastoral farmers to achieve for all calves. Very few studies have investigated the success of leaving calves with their dams in pastoral conditions, so this observational study assessed serum total protein (STP) in calves born at pasture and left to suckle from their dams for up to 24 h. It also investigated failure of transfer of passive immunity (FPT) once calves had been provided colostrum from the farmer and some factors that may contribute to the risk of FPT. Over 2 years, 8 farms (4 in the North Island, 4 in South Island of New Zealand) were involved in an observational study where cows and calves were observed for 24 h a day for 2 wk per farm. Observers recorded the time from birth to first suckling, number of suckling events, time of calf removal from the dam, and ambient temperature. Calves were blood sampled on arrival at housing, before receiving colostrum from the farmer (d 1), and again 2 d later (d 3) to test for STP concentration. On d 1, 689 calves had blood samples collected, at a median of 11.5 (interquartile range 5.6 to 19.2) hours postbirth. Of these, 283 calves [41.1%; 95% confidence interval (CI) 37.4 to 44.9%] had STP >52 g/L (proportion by farm ranged from 10 to 78%). On d 3, 680 blood samples were collected, of which 16.0% (95% CI 13.5 to 19.0) had FPT (STP ≤52 g/L) with proportion by farm ranging from 2.5 to 31.6%. The FPT risk at d 3 in calves that did not suckle before housing was 2.91 (95% CI 2.04 to 4.13) times the risk in calves that suckled. For every hour longer postbirth that it took for a calf to have its first suckling event, odds of FPT at d 3 increased by 1.21 (95% CI 1.08 to 1.36) times, and compared with calves that only suckled once, calves that suckled 2, 3-5, or >5 times had 0.42 (95% CI 0.15 to 0.99), 0.35 (95% CI 0.15 to 0.76), and 0.10 (95% CI 0.005 to 0.47) times the odds of FPT, respectively. For every 1-percentage-point increase in the Brix % of the colostrum, the odds of FPT decreased by 33% (95% CI 24- to 42). Calves that suckled in the paddock and were fed colostrum with ≥22% Brix had the highest STP, and lowest odds of FPT, of any suckling/Brix % combination. There was a trend for STP to be greater in calves that suckled in the paddock and fed <22% Brix compared with calves that did not suckle in the paddock and fed ≥22% Brix. However, the calves in the former group also tended to have a greater risk of FPT at d 3, and a greater STP variability. There were very large between-farm variabilities for rates of suckling, colostrum feeding, and FPT risk that urgently require further investigation for calves born at pasture.Item Randomized clinical trial investigating the effect of exercise and standing on concrete prior to first calving on time to first lameness event in dairy heifers(Elsevier Inc and Fass Inc on behalf of the American Dairy Science Association, 2022-09) Mason WA; Huxley JL; Laven RAThis controlled clinical trial investigated if an intervention immediately before the first calving event could reduce lameness incidence in pasture-based dairy heifers. Seven hundred ninety heifers across 6 farms in the Waikato region of New Zealand were randomly enrolled into treatment or control groups at a ratio of 1:1. The treatment consisted of heifers walking approximately 1 km from pasture along the farm race, standing on concrete for one hour, and then walking back to their paddock. This occurred once a day, 5 times a week, for 5 wk before calving. The control heifers were managed solely at pasture before calving. Just before calving, both groups were bought together and managed as one group for the remainder of the study. Heifers were followed for up to 28 wk, with fortnightly lameness scores collected to identify animals with a lameness score of ≥2 (lameness score 0–3). Lameness could also be diagnosed by the farmers, who had no formal lameness scoring training. The primary outcome of interest was time to first lame event. Secondary outcomes included milk solid production, change in body condition score during early lactation, time from onset of breeding season until conception, feasibility of the regimen and change in sole soft tissue thickness and profile. From a total of 782 heifers that had data collected on the outcomes, 102 (13.0%) individual first lameness events were recorded, 53 in heifers in the treatment group and 49 in control heifers. Of those 102 lameness events, 51 were first diagnosed by farmers. No apparent differences were detected in the hazard rate for time to first lame event between heifers in the 2 treatment groups. Treatment heifers had a 1.12 times hazard rate (95% confidence interval: 0.65–1.95) of a lame event compared with control heifers. No associations were identified between heifers in the 2 groups for any of the secondary outcome measures. However, farmers did report that the intervention was practical and easy to implement. It is possible that the intervention did not challenge the hoof enough, and that longer duration and distances walked may have resulted in a different outcome. Although no improvement in lameness outcomes were reported, no negative effects during and after the intervention were noted in animals in the intervention group. Further research into the area of lameness prevention is needed as there are few evidence-based solutions available to reduce lameness incidence in pasture-based systems.
