Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Mutations in the riboflavin biosynthesis pathway confer resistance to furazolidone and abolish the synergistic interaction between furazolidone and vancomycin in Escherichia coli.
    (Microbiology Society, England, 2025-02-11) Wykes H; Le VVH; Rakonjac J
    The combined application of furazolidone and vancomycin has previously been shown to be synergistic against Gram-negative pathogens, with great therapeutic promise. However, the emergence and mechanism of resistance to this antibiotic combination have not been characterized. To fill this gap, we here selected Escherichia coli progeny for growth on the furazolidone-vancomycin combination at the concentration where the parent was sensitive. We show that selected clones were associated with increased resistance to neither, only one drug, or both furazolidone and vancomycin, but in all cases were associated with a decrease in the growth inhibition synergy. Using whole-genome sequencing, we identified various gene mutations in the resistant mutants. We further investigated the mechanism behind the most frequently arising mutations, those in the riboflavin biosynthesis genes ribB and ribE, that represent novel mutations causing furazolidone resistance and diminished vancomycin-furazolidone synergy. It was found that these ribB/ribE mutations act predominantly by decreasing the activity of the NfsA and NfsB nitroreductases. The emergence of the ribB/ribE mutations imposes a significant fitness cost on bacterial growth. Surprisingly, supplementing the medium with riboflavin, which compensates for the affected riboflavin biosynthesis pathway, could restore the normal growth of the ribB/ribE mutants while having no effects on the furazolidone resistance phenotype. Searching the ribB/ribE mutations in the public sequencing database detects the presence of the furazolidone-resistance-conferring ribE mutations (TKAG131-134 deletion or duplication) in clinical isolates from different countries. Hypotheses explaining why these ribE mutations were found in clinical isolates despite having poor fitness were further discussed.
  • Item
    When less is more: shortening the Lpp protein leads to increased vancomycin resistance in Escherichia coli.
    (Springer Nature Limited, 2023-12-01) Wykes H; Le VVH; Olivera C; Rakonjac J
    Vancomycin is a naturally occurring cell-wall-targeting glycopeptide antibiotic. Due to the low potency of this antibiotic against Gram-negative pathogens, such as Escherichia coli, there is a limited knowledge about interactions between vancomycin and this group of bacteria. Here, we show that an in-frame 63 bp deletion of the lpp gene caused a fourfold increase in vancomycin resistance in E. coli. The resulting protein, LppΔ21, is 21 amino acids shorter than the wild-type Lpp, a helical structural lipoprotein that controls the width of the periplasmic space through its length. The mutant remains susceptible to synergistic growth inhibition by combination of furazolidone and vancomycin; with furazolidone decreasing the vancomycin MIC by eightfold. These findings have clinical relevance, given that the vancomycin concentration required to select the lpp mutation is reachable during typical vancomycin oral administration for treating Clostridioides difficile infections. Combination therapy with furazolidone, however, is likely to prevent emergence and outgrowth of the lpp-mutated Gram-negative coliforms, avoiding exacerbation of the patient's condition during the treatment.
  • Item
    In vitro synergy of 5-nitrofurans, vancomycin and sodium deoxycholate against Gram-negative pathogens
    (Microbiology Society, 2021-01-15) Olivera C; Le VVH; Davenport C; Rakonjac J
    Introduction. There is an urgent need for effective therapies against bacterial infections, especially those caused by antibiotic-resistant Gram-negative pathogens. Hypothesis. Synergistic combinations of existing antimicrobials show promise due to their enhanced efficacies and reduced dosages which can mitigate adverse effects, and therefore can be used as potential antibacterial therapy. Aim. In this study, we sought to characterize the in vitro interaction of 5-nitrofurans, vancomycin and sodium deoxycholate (NVD) against pathogenic bacteria. Methodology. The synergy of the NVD combination was investigated in terms of growth inhibition and bacterial killing using checkerboard and time-kill assays, respectively. Results. Using a three-dimensional checkerboard assay, we showed that 5-nitrofurans, sodium deoxycholate and vancomycin interact synergistically in the growth inhibition of 15 out of 20 Gram-negative strains tested, including clinically significant pathogens such as carbapenemase-producing Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii, and interact indifferently against the Gram-positive strains tested. The time-kill assay further confirmed that the triple combination was bactericidal in a synergistic manner. Conclusion. This study demonstrates the synergistic effect of 5-nitrofurans, sodium deoxycholate and vancomycin against Gram-negative pathogens and highlights the potential of the combination as a treatment for Gram-negative and Gram-positive infections.