Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item Chiral Lemniscate Formation in Magnetic Field Controlled Topological Fluid Flows(Wiley-VCH GmbH, 2025-04-03) Jellicoe M; Gardner Z; Alotaibi AEH; Shoemaker KE; Scott JM; Wang S; Alotaibi BM; Luo X; Chuah C; Gibson CT; He S; Vimalanathan K; Gascooke JR; Chen X; Rodger A; Huang H; Dalgarno SJ; Antunes E; Weiss GA; Li Q; Quinton JS; Raston CLHigh shear spinning top (ST) typhoon-like fluid flow in a rapidly rotating inclined tube within a vortex fluidic device (VFD) approaches homochirality throughout the liquid with toroids of bundled single-walled carbon nanotubes (SWCNTs) twisted into stable chiral lemniscates (in the shape of Figure 8s), predominantly as the R-or S-structures, for the tube rotating clockwise (CW) or counterclockwise (CCW). However, this is impacted by the Earth's magnetic field (BE). Theory predicts 1–20 MPa pressure for their formation, with their absolute chirality determined from scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. Thus, the resultant lemniscate structures establish the absolute chirality of the inner and outer components of the ST flow. These chiral flows and lemniscates can be flipped to the opposite chirality by changing the orientation of the tube relative to the inclination angle of BE, by moving the geographical location. Special conditions prevail where the tangential angle of the outer and inner flow of the ST becomes periodically aligned with BE, which respectively dramatically reduce the formation of toroids (and thus lemniscates) and formation of lemniscates from the toroids formed by the double-helical (DH) flow generated by side wall Coriolis forces and Faraday waves.Item The Value Cocreation Influence Mechanism of Network Freight Transport Platform in IoT-Based Environments: Under the Service-Dominant Logic(John Wiley and Sons, 2021-05-24) Bai P; Wu Q; Li Q; Zhang L; Jiang Y; Chen B; Wang WThe Internet of Things (IoT) has brought many benefits to the development of industries, from manufacturing to services. In the context of IoT, the network freight transport platform is equivalent to an integrator, integrating the scattered resources such as carriers and shippers in the supply chain, providing a solution, improving the use efficiency of vehicles, effectively reducing logistics cost, and creating value for the freight transport platform and bilateral customers. The purpose of this research is to explain the influence mechanism of transport demand subjects' participation in value cocreation (VCC) under the service-dominant logic (SDL). We proposed a conceptual framework and 10 hypotheses and used SEM to measure the direct and mediating relationship among SDL, transport demand subject (TDS) participation, relational embeddedness (RE), platform VCC, and TDS value in the online business environment. The findings show that (1) SDL, TDS participation, and RE do not directly affect the TDS value, but indirectly through platform VCC; (2) SDL affects platform VCC not only directly but also indirectly through TDS participation and RE; (3) TDS participation affects platform VCC not only directly but also indirectly through RE; (4) RE indirectly affects TDS value by affecting platform VCC; and (5) platform VCC plays a mediating role in SDL, TDS participation, RE, and TDS value. Hence, transport enterprises should pay attention to the innovation concept, guide TDS participation, jointly improve platform VCC, give play to the network effect of the freight transport platform, and achieve TDS value through the deepening of TDS relationship embedding.Item Author Correction: Dense sampling of bird diversity increases power of comparative genomics.(2021-04) Feng S; Stiller J; Deng Y; Armstrong J; Fang Q; Reeve AH; Xie D; Chen G; Guo C; Faircloth BC; Petersen B; Wang Z; Zhou Q; Diekhans M; Chen W; Andreu-Sánchez S; Margaryan A; Howard JT; Parent C; Pacheco G; Sinding M-HS; Puetz L; Cavill E; Ribeiro ÂM; Eckhart L; Fjeldså J; Hosner PA; Brumfield RT; Christidis L; Bertelsen MF; Sicheritz-Ponten T; Tietze DT; Robertson BC; Song G; Borgia G; Claramunt S; Lovette IJ; Cowen SJ; Njoroge P; Dumbacher JP; Ryder OA; Fuchs J; Bunce M; Burt DW; Cracraft J; Meng G; Hackett SJ; Ryan PG; Jønsson KA; Jamieson IG; da Fonseca RR; Braun EL; Houde P; Mirarab S; Suh A; Hansson B; Ponnikas S; Sigeman H; Stervander M; Frandsen PB; van der Zwan H; van der Sluis R; Visser C; Balakrishnan CN; Clark AG; Fitzpatrick JW; Bowman R; Chen N; Cloutier A; Sackton TB; Edwards SV; Foote DJ; Shakya SB; Sheldon FH; Vignal A; Soares AER; Shapiro B; González-Solís J; Ferrer-Obiol J; Rozas J; Riutort M; Tigano A; Friesen V; Dalén L; Urrutia AO; Székely T; Liu Y; Campana MG; Corvelo A; Fleischer RC; Rutherford KM; Gemmell NJ; Dussex N; Mouritsen H; Thiele N; Delmore K; Liedvogel M; Franke A; Hoeppner MP; Krone O; Fudickar AM; Milá B; Ketterson ED; Fidler AE; Friis G; Parody-Merino ÁM; Battley PF; Cox MP; Lima NCB; Prosdocimi F; Parchman TL; Schlinger BA; Loiselle BA; Blake JG; Lim HC; Day LB; Fuxjager MJ; Baldwin MW; Braun MJ; Wirthlin M; Dikow RB; Ryder TB; Camenisch G; Keller LF; DaCosta JM; Hauber ME; Louder MIM; Witt CC; McGuire JA; Mudge J; Megna LC; Carling MD; Wang B; Taylor SA; Del-Rio G; Aleixo A; Vasconcelos ATR; Mello CV; Weir JT; Haussler D; Li Q; Yang H; Wang J; Lei F; Rahbek C; Gilbert MTP; Graves GR; Jarvis ED; Paten B; Zhang GIn Supplementary Table 1 of this Article, 23 samples (B10K-DU-029-32, B10K-DU-029-33, B10K-DU-029-36 to B10K-DU-029-44, B10K-DU- 029-46, B10K-DU-029-47, B10K-DU-029-49 to B10K-DU-029-53, B10K-DU- 029-75 to B10K-DU-029-77, B10K-DU-029-80, and B10K-DU-030-03; styled in boldface in the revised table) were assigned to the incorrect institution. Supplementary Table 1 has been amended to reflect the correct source institution for these samples, and associated data (tissue, museum ID/source specimen ID, site, state/province, latitude, longitude, date collected and sex) have been updated accordingly. The original table is provided as Supplementary Information to this Amendment, and the original Article has been corrected online.
