Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 10 of 12
  • Item
    Interaction between Rumen Epithelial miRNAs-Microbiota-Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep.
    (MDPI (Basel, Switzerland), 2023-09-23) Lv W; Sha Y; Liu X; He Y; Hu J; Wang J; Li S; Guo X; Shao P; Zhao F; Li M; Freking B
    Tibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.
  • Item
    Synergistic Responses of Tibetan Sheep Rumen Microbiota, Metabolites, and the Host to the Plateau Environment.
    (MDPI (Basel, Switzerland), 2023-10-03) Sha Y; Guo X; He Y; Li W; Liu X; Zhao S; Hu J; Wang J; Li S; Zhao Z; Hao Z; Miccheli A; Docea AO; Fukui H
    Plateau adaptation in animals involves genetic mechanisms as well as coevolutionary mechanisms of the microbiota and metabolome of the animal. Therefore, the characteristics of the rumen microbiome and metabolome, transcriptome, and serum metabolome of Tibetan sheep at different altitudes (4500 m, 3500 m, and 2500 m) were analyzed. The results showed that the rumen differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and carbohydrate metabolism, and there was a significant correlation with microbiota. The differentially expressed genes and metabolites at middle and high altitudes were coenriched in asthma, arachidonic acid metabolism, and butanoate and propanoate metabolism. In addition, the serum differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and metabolism of xenobiotics by cytochrome P450, and they were also related to microbiota. Further analysis revealed that rumen metabolites accounted for 7.65% of serum metabolites. These common metabolites were mainly enriched in metabolic pathways and were significantly correlated with host genes (p < 0.05). This study found that microbiota, metabolites, and epithelial genes were coenriched in pathways related to lipid metabolism, energy metabolism, and immune metabolism, which may be involved in the regulation of Tibetan sheep adaptation to plateau environmental changes.
  • Item
    Invited review: Camel milk and gut health-Understanding digestibility and the effect on gut microbiota.
    (Elsevier B.V., 2023-11-16) Ali AH; Li S; Liu S-Q; Gan R-Y; Li H-B; Kamal-Eldin A; Ayyash M
    Camel milk (CM), known for its immune-regulatory, anti-inflammatory, antiapoptotic, and antidiabetic properties, is a natural healthy food. It is easily digestible due to the high levels of β-casein and diverse secreted antibodies, exhibiting superior antibacterial and antiviral activities compared with bovine milk. β-casein is less allergic and more digestible because it is more susceptible to digestive hydrolysis in the gut; therefore, higher levels of β-casein make CM advantageous for human health. Furthermore, antibodies help the digestive system by destroying the antigens, which are then overwhelmed and digested by macrophages. The connection between the gut microbiota and human health has gained substantial research attention, as it offers potential benefits and supports disease treatment. The gut microbiota has a vital role in regulating the host's health because it helps in several biological functions, such as protection against pathogens, immune function regulation, energy harvesting from digested foods, and reinforcement of digestive tract biochemical barriers. These functions could be affected by the changes in the gut microbiota profile, and gut microbiota differences are associated with several diseases, such as inflammatory bowel disease, colon cancer, irritable bowel disorder, mental illness, allergy, and obesity. This review focuses on the digestibility of CM components, particularly protein and fat, and their influence on gut microbiota modulation. Notably, the hypoallergenic properties and small fat globules of CM contribute to its enhanced digestibility. Considering the rapid digestion of its proteins under conditions simulating infant gastrointestinal digestion, CM exhibits promise as a potential alternative for infant formula preparation due to the high β-/αs-casein ratio and protective proteins, in addition to the absence of β-lactoglobulin.
  • Item
    Rumen Epithelial Development- and Metabolism-Related Genes Regulate Their Micromorphology and VFAs Mediating Plateau Adaptability at Different Ages in Tibetan Sheep.
    (MDPI (Basel, Switzerland), 2022-12-16) Sha Y; He Y; Liu X; Zhao S; Hu J; Wang J; Li S; Li W; Shi B; Hao Z; Martinez-Pastor F
    The rumen is an important hallmark organ of ruminants and plays an important role in the metabolism and immune barrier of Tibetan sheep on the Plateau. However, there are few studies on rumen development and metabolism regulation in Tibetan sheep at different ages. Here, we comprehensively analyzed the immune function, fermentation function, rumen epithelial micromorphology and transcriptome profile of Tibetan sheep at different ages. The results showed that the concentration of IgG decreased and the concentration of IgM increased with age (p < 0.05), and the highest concentration of IgA was observed at 1.5 and 3.5 years of age. In terms of rumen fermentation characteristics, VFAs of 4-month-old lambs were the highest, followed by VFAs and NH3-N of Tibetan sheep at 3.5 years of age. Hematoxylin-eosin staining and transmission electron microscopy section examination of rumen epithelial tissue showed that the rumen papilla width increased with age (p < 0.001), the thickness of the stratum corneum decreased, the cells in the stratum corneum showed accelerated migration and the thickness of the rumen muscle layer increased (p < 0.001). Desmosomal junctions between the layers of rumen epithelium increased at 1.5 and 3.5 years old, forming a compact barrier structure, and the basal layer had more mitochondria involved in the regulation of energy metabolism. RNA-seq analysis revealed that a total of 1006 differentially expressed genes (DEGs) were identified at four ages. The DEGs of Tibetan sheep aged 4 months and 6 years were mainly enriched in the oxidation−reduction process and ISG15-protein conjugation pathway. The 1.5 and 3.5-year-olds were mainly enriched in skeletal muscle thin filament assembly, mesenchyme migration and the tight junction pathway. WGCNA showed that DEGs related to rumen microbiota metabolite VFAs and epithelial morphology were enriched in “Metabolism of xenobiotics by cytochrome P450, PPAR signaling pathway, Butanoate metabolism pathways” and participated in the regulation of rumen epithelial immune and fermentation metabolism functions of Tibetan sheep at different ages. This study systematically revealed the regulatory mechanism of rumen epithelial development and metabolism in the plateau adaptation of Tibetan sheep, providing a new approach for the study of plateau adaptation.
  • Item
    Response of Ruminal Microbiota-Host Gene Interaction to High-Altitude Environments in Tibetan Sheep.
    (MDPI (Basel, Switzerland), 2022-10-17) Sha Y; Ren Y; Zhao S; He Y; Guo X; Pu X; Li W; Liu X; Wang J; Li S; Wahli W
    Altitude is the main external environmental pressure affecting the production performance of Tibetan sheep, and the adaptive evolution of many years has formed a certain response mechanism. However, there are few reports on the response of ruminal microbiota and host genomes of Tibetan sheep to high-altitude environments. Here, we conducted an integrated analysis of volatile fatty acids (VFAs), microbial diversity (16S rRNA), epithelial morphology, and epithelial transcriptome in the rumen of Tibetan sheep at different altitudes to understand the changes in ruminal microbiota−host interaction in response to high altitude. The differences in the nutritional quality of forage at different altitudes, especially the differences in fiber content (ADF/NDF), led to changes in rumen VFAs of Tibetan sheep, in which the A/P value (acetic acid/propionic acid) was significantly decreased (p < 0.05). In addition, the concentrations of IgA and IgG in Middle-altitude (MA) and High-altitude Tibetan sheep (HA) were significantly increased (p < 0.05), while the concentrations of IgM were significantly increased in MA (p < 0.05). Morphological results showed that the width of the rumen papilla and the thickness of the basal layer increased significantly in HA Tibetan sheep (p < 0.05). The 16S rRNA analysis found that the rumen microbial diversity of Tibetan sheep gradually decreased with increasing altitude, and there were some differences in phylum- and genus-level microbes at the three altitudes. RDA analysis found that the abundance of the Rikenellaceae RC9 gut group and the Ruminococcaceae NK4A214 group increased with altitudes. Furthermore, a functional analysis of the KEGG microbial database found the “lipid metabolism” function of HA Tibetan sheep to be significantly enriched. WGCNA revealed that five gene modules were enriched in “energy production and conversion”, “lipid transport and metabolism”, and “defense mechanisms”, and cooperated with microbiota to regulate rumen fermentation and epithelial immune barrier function, so as to improve the metabolism and immune level of Tibetan sheep at high altitude.
  • Item
    The impact of heat-set milk protein gel textures modified by pH on circulating amino acid appearance and gastric function in healthy female adults: a randomised controlled trial.
    (Royal Society of Chemistry, 2024-05-21) Milan AM; Menting GGA; Barnett MPG; Liu Y; McNabb WC; Roy NC; Hutchings SC; Mungure T; Weeks M; Li S; Hort J; Calder S; O'Grady G; Mithen RF
    Modification of dairy proteins during processing impacts structural assemblies, influencing textural and nutritional properties of dairy products, and release and availability of amino acids during digestion. By modifying only pH, acid heat-set bovine dairy gels with divergent textural properties were developed to alter protein digestion. In vitro assay confirmed faster digestion of protein from a firm gel (pH 5.65) versus a soft gel (pH 6.55). We hypothesised that firm gel (FIRM-G; pH 5.6) would result in greater indispensable amino acid (IAA) appearance in circulation over 5 h and corresponding differences in gastric myoelectrical activity relative to soft gel (SOFT-G; pH 6.2). In a randomised, single-blind cross-over trial, healthy females (n = 20) consumed 150 g of each gel; plasma amino acid appearance was assessed over 5 hours. Iso-nitrogenous, iso-caloric gels were prepared from identical mixtures of bovine milk and whey protein concentrates; providing 17.7 g (FIRM-G) and 18.9 g (SOFT-G) of protein per serving. Secondary outcomes included gastric myoelectrical activity measured by body surface gastric mapping, glycaemic, triglyceridaemic, and subjective appetite and digestive responses. Overall plasma IAA (area under the curve) did not differ between gels. However, plasma IAA concentrations were higher, and increased more rapidly over time after SOFT-G compared with FIRM-G (1455 ± 53 versus 1350 ± 62 μmol L-1 at 30 min, p = 0.024). Similarly, total, branched-chain and dispensable amino acids were higher at 30 min with SOFT-G than FIRM-G (total: 3939 ± 97 versus 3702 ± 127 μmol L-1, p = 0.014; branched-chain: 677 ± 30 versus 619 ± 34 μmol L-1, p = 0.047; dispensable: 2334 ± 53 versus 2210 ± 76 μmol L-1, p = 0.032). All other measured parameters were similar between gels. Peak postprandial aminoacidaemia was higher and faster following ingestion of SOFT-G. Customised plasma amino acid appearance from dairy is achievable by altering gel coagulum structure using pH during processing and may have minimal influence on related postprandial responses, with implications for targeting food design for optimal health. The Clinical Trial Registry number is ACTRN12622001418763 (https://www.anzctr.org.au) registered November 7, 2022.
  • Item
    Intragastric restructuring dictates the digestive kinetics of heat-set milk protein gels of contrasting textures
    (Elsevier, 2024-11) Li S; Mungure T; Ye A; Loveday SM; Ellis A; Weeks M; Singh H
    The gelation of milk proteins can be achieved by various means, enabling the development of diverse products. In this study, heat-set milk protein gels (15 % protein) of diverse textures were made by pH modulation and two gels were selected for dynamic in vitro gastric digestion: a spoonable soft gel (SG, pH 6.55' G' of ∼100 Pa) and a sliceable firm gel (FG, pH 5.65; G' of ∼7000 Pa). The two gels displayed markedly different structural changes and digestion kinetics during gastric digestion. The SG underwent substantial structural compaction during the first 120 min of gastric digestion into a denser and firmer gastric chyme (26.3 % crude protein, G* of ∼8500 Pa) than the chyme of the FG (15.7 % crude protein, G* of ∼3000 Pa). These contrasting intragastric structural changes of the gels reversed their original textural differences, which led to slower digestion and gastric emptying of proteins from the SG compared with the FG. The different intragastric pH profiles during the digestion of the two gels likely played a key role by modulating the proteolytic activity and specificity (to κ-casein) of pepsin. Preferential early cleavage of κ-casein in SG stimulated coagulation and compaction of solid chyme, whereas rapid hydrolysis of αS- and β-caseins in the FG weakened coagulation. This study provided new insights into controlling the structural development of dairy-based foods during gastric digestion and modulating digestion kinetics.
  • Item
    Comparative lipidomics analysis of in vitro lipid digestion of sheep milk: Influence of homogenization and heat treatment
    (Elsevier Inc on behalf of the American Dairy Science Association, 2024-02) Pan Z; Ye A; Fraser K; Li S; Dave A; Singh H
    This study investigated the changes in sheep milk lipids during in vitro gastrointestinal digestion in response to heat treatment (75°C/15 s and 95°C/5 min) and homogenization (200/50 bar) using lipidomics. Homogenized and pasteurized sheep milk had higher levels of polar lipids in gastric digesta emptied at 20 min than raw sheep milk. Intense heat treatment of homogenized sheep milk resulted in a reduced level of polar lipids compared with homogenized-pasteurized sheep milk. The release rate of free fatty acids during small intestinal digestion for gastric digesta emptied at 20 min followed the order: raw ≤ pasteurized < homogenized-pasteurized ≤ homogenized-heated sheep milk; the rate for gastric digesta emptied at 180 min showed a reverse order. No differences in the lipolysis degree were observed among differently processed sheep milks. These results indicated that processing treatments affect the lipid composition of digesta and the lipolysis rate but not the lipolysis degree during small intestinal digestion.
  • Item
    Dynamic in vitro gastric digestion behavior of goat milk: Effects of homogenization and heat treatments.
    (Elsevier Inc on behalf of the American Dairy Science Association, 2022-02) Li S; Ye A; Pan Z; Cui J; Dave A; Singh H
    The gastric digestion behavior of differently processed goat milks was investigated using a dynamic in vitro gastric digestion model, the human gastric simulator. Homogenization and heat treatment of goat milk resulted in gastric clots with highly fragmented structures. They also delayed the pH reduction during digestion, altered the chemical composition of the clots and the emptied digesta, promoted the release of calcium from the clots, and accelerated the hydrolysis and the emptying of milk proteins. The apparent density of the protein particles and the location of the homogenized fat globules changed during the digestion process, as shown in the emptied digesta of the homogenized goat milks. The effects of processing on the digestion behavior of goat milk were broadly similar to those previously reported for cow milk. However, the overall gastric digestion process of goat milk was more affected by homogenization than by heat treatments.
  • Item
    Movements of moisture and acid in gastric milk clots during gastric digestion: Spatiotemporal mapping using hyperspectral imaging
    (Elsevier Ltd, 2024-01-15) Li S; Dixit Y; Reis MM; Singh H; Ye A
    Ruminant milk is known to coagulate into structured clots during gastric digestion. This study investigated the movements of moisture and acid in skim milk clots formed during dynamic gastric digestion and the effects of milk type (regular or calcium-rich) and the presence/absence of pepsin. We conducted hyperspectral imaging analysis and successfully modelled the moisture contents based on the spectral information using partial least squares regression. We generated prediction maps of the spatiotemporal distribution of moisture within the samples at different stages of gastric digestion. Simultaneously to acid uptake, the moisture in the milk clots tended to decrease over the digestion time; this was significantly promoted by pepsin. Moisture mapping by hyperspectral imaging demonstrated that the high and low moisture zones were centralized within the clot and at the surface respectively. A structural compaction process promoted by pepsinolysis and acidification probably contributed to the water expulsion from the clots during digestion.