Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Intragastric restructuring dictates the digestive kinetics of heat-set milk protein gels of contrasting textures
    (Elsevier, 2024-11) Li S; Mungure T; Ye A; Loveday SM; Ellis A; Weeks M; Singh H
    The gelation of milk proteins can be achieved by various means, enabling the development of diverse products. In this study, heat-set milk protein gels (15 % protein) of diverse textures were made by pH modulation and two gels were selected for dynamic in vitro gastric digestion: a spoonable soft gel (SG, pH 6.55' G' of ∼100 Pa) and a sliceable firm gel (FG, pH 5.65; G' of ∼7000 Pa). The two gels displayed markedly different structural changes and digestion kinetics during gastric digestion. The SG underwent substantial structural compaction during the first 120 min of gastric digestion into a denser and firmer gastric chyme (26.3 % crude protein, G* of ∼8500 Pa) than the chyme of the FG (15.7 % crude protein, G* of ∼3000 Pa). These contrasting intragastric structural changes of the gels reversed their original textural differences, which led to slower digestion and gastric emptying of proteins from the SG compared with the FG. The different intragastric pH profiles during the digestion of the two gels likely played a key role by modulating the proteolytic activity and specificity (to κ-casein) of pepsin. Preferential early cleavage of κ-casein in SG stimulated coagulation and compaction of solid chyme, whereas rapid hydrolysis of αS- and β-caseins in the FG weakened coagulation. This study provided new insights into controlling the structural development of dairy-based foods during gastric digestion and modulating digestion kinetics.
  • Item
    Movements of moisture and acid in gastric milk clots during gastric digestion: Spatiotemporal mapping using hyperspectral imaging
    (Elsevier Ltd, 2024-01-15) Li S; Dixit Y; Reis MM; Singh H; Ye A
    Ruminant milk is known to coagulate into structured clots during gastric digestion. This study investigated the movements of moisture and acid in skim milk clots formed during dynamic gastric digestion and the effects of milk type (regular or calcium-rich) and the presence/absence of pepsin. We conducted hyperspectral imaging analysis and successfully modelled the moisture contents based on the spectral information using partial least squares regression. We generated prediction maps of the spatiotemporal distribution of moisture within the samples at different stages of gastric digestion. Simultaneously to acid uptake, the moisture in the milk clots tended to decrease over the digestion time; this was significantly promoted by pepsin. Moisture mapping by hyperspectral imaging demonstrated that the high and low moisture zones were centralized within the clot and at the surface respectively. A structural compaction process promoted by pepsinolysis and acidification probably contributed to the water expulsion from the clots during digestion.