Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Seascape Genetics: Populations, Individuals, and Genes Marooned and Adrift
    (1/03/2013) Riginos C; Liggins L
    Seascape genetics is the study of how spatially variable structural and environmental features influence genetic patterns of marine organisms. Seascape genetics is conceptually linked to landscape genetics and this likeness frequently allows investigators to use similar theoretical and analytical methods for both seascape genetics and landscape genetics. But, the physical and environmental attributes of the ocean and biological attributes of organisms that live in the sea, especially the large spatial scales of seascape features and the high dispersal ability of many marine organisms, differ from those of terrestrial organisms that have typified landscape genetic studies. This paper reviews notable papers in the emerging field of seascape genetics, highlighting pervasive themes and biological attributes of species and seascape features that affect spatial genetic patterns in the sea. Similarities to, and differences from, (terrestrial) landscape genetics are discussed, and future directions are recommended. © 2012 Blackwell Publishing Ltd.
  • Item
    Taking the Plunge: An Introduction to Undertaking Seascape Genetic Studies and using Biophysical Models
    (1/03/2013) Liggins L; Treml EA; Riginos C
    The field of seascape genetics aims to evaluate the effects of environmental features on spatial genetic patterns of marine organisms. Although many methods of genetic analysis and inference appropriate to "marine landscapes" derive from terrestrial landscape genetics, aspects of marine living introduce special challenges for assessing spatial genetic variation. For instance, marine organisms are often highly dispersive, so that genetic patterns can be subtle, and the temporal variability of the marine environment makes these patterns difficult to characterise. Tools and techniques from oceanography can help describe the highly connected and dynamic nature of the marine environment. In particular, models incorporating physical oceanography and species attributes in realistic simulations (e.g. biophysical models) can help us understand this complex process and formulate spatially explicit biologically-informed predictions of gene flow. Thus, researchers embarking on a seascape genetic study need a solid understanding of marine organisms and spatial genetics perhaps combined with knowledge of physical oceanography and ecological modeling. Although some researchers may acquire proficiency in all of these areas, seascape genetic studies incorporating biophysical modeling are likely to bring together groups of investigators with complementary expertise. This preliminary guide is intended to be a starting point for a reader new to either seascape genetics or biophysical models. © 2013 Blackwell Publishing Ltd.