Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 10 of 10
  • Item
    Evaluating edge-of-range genetic patterns for tropical echinoderms, Acanthaster planci and Tripneustes gratilla, of the Kermadec Islands, southwest Pacific
    (ROSENSTIEL SCH MAR ATMOS SCI, 1/01/2014) Liggins L; Gleeson L; Riginos C
    Edge-of-range populations are often typified by patterns of low genetic diversity and high genetic differentiation relative to populations within the core of a species range. The "core-periphery hypothesis," also known as the "central-marginal hypothesis," predicts that these genetic patterns at the edge-of-range are a consequence of reduced population size and connectivity toward a species range periphery. It is unclear, however, how these expectations relate to high dispersal marine species that can conceivably maintain high abundance and high connectivity at their range edge. In the present study, we characterize the genetic patterns of two tropical echinoderm populations in the Kermadec Islands, the edge of their southwest Pacific range, and compare these genetic patterns to those from populations throughout their east Indian and Pacific ranges. We find that the populations of both Acanthaster planci (Linnaeus, 1758) and Tripneustes gratilla (Linnaeus, 1758) are represented by a single haplotype at the Kermadec Islands (based on mitochondrial cytochrome oxidase C subunit I). Such low genetic diversity concurs with the expectations of the "core-periphery hypothesis." Furthermore, the haplotypic composition of both populations suggests they have been founded by a small number of colonists with little subsequent immigration. Thus, local reproduction and self-recruitment appear to maintain these populations despite the ecologically marginal conditions of the Kermadec Islands for these tropical species. Understanding rates of self-recruitment vs reliance on connectivity with populations outside of the Kermadec Islands has implications for the persistence of these populations and range stability of these echinoderm species.© 2014 Rosenstiel School of Marine and Atmospheric Science of the University of Miami.
  • Item
    The population genetic structure of the urchin Centrostephanus rodgersii in New Zealand with links to Australia
    (1/09/2021) Thomas LJ; Liggins L; Banks SC; Beheregaray LB; Liddy M; McCulloch GA; Waters JM; Carter L; Byrne M; Cumming RA; Lamare MD
    The diadematid sea urchin Centrostephanus rodgersii occurs in Australia and New Zealand and has undergone recent southward range extension in Australia as a result of regional warming. Clarifying the population genetic structure of this species across its New Zealand range would allow a better understanding of recent and future mechanisms driving range changes in the species. Here, we use microsatellite DNA data to assess connectivity and genetic structure in 385 individuals from 14 locations across the Australian and New Zealand ranges of the species. We detected substantial genetic differentiation among C. rodgersii populations from Australia and New Zealand. However, the population from Port Stephens (located north of Newcastle), Australia, strongly clustered with New Zealand samples. This suggests that the New Zealand populations recently originated from this area, likely via larval transport in the Tasman Front flow that arises in this region. The weak population genetic structure and relatively low genetic diversity detected in New Zealand (global Fst = 0.0021) relative to Australia (global Fst = 0.0339) is consistent with the former population’s inferred history of recent climate-driven expansion. Population-level inbreeding is low in most populations, but were higher in New Zealand (global Fis = 0.0833) than in Australia (global Fis = 0.0202), suggesting that self-recruitment is playing an increasingly important role in the New Zealand region. Our results suggest that C. rodgersii is likely to spread southwards as ocean temperatures increase; therefore, it is crucial that researchers develop a clearer understanding of how New Zealand ecosystems will be reshaped by this species (and others) under climate change.
  • Item
    Seascape features, rather than dispersal traits, predict spatial genetic patterns in co-distributed reef fishes
    (Wiley, 2015) Liggins L; Treml EA; Possingham HP; Riginos C
    Aim: To determine which seascape features have shaped the spatial genetic patterns of coral reef fishes, and to identify common patterns among species related to dispersal traits [egg type and pelagic larval duration (PLD)]. Location: Indian and Pacific Oceans, including the Indo-Australian Archipelago. Methods: We sampled coral reef fishes with differing dispersal traits (Pomacentrus coelestis, Dascyllus trimaculatus, Hailchoeres hortulanus and Acanthurus triostegus) and characterized spatial (mtDNA) genetic patterns using AMOVA-clustering and measures of genetic differentiation. Similarity in the spatial genetic patterns among species was assessed using the congruence among distance matrices method and the seascape features associated with the genetic differentiation of each species were identified using multiple regression of distance matrices (MRDM) and stepwise model selection. Results: Similar spatial genetic patterns were found for P. coelestis and H. hortulanus, despite their differing egg type (benthic versus pelagic). MRDM indicated that geographical distance was underlying their correlated genetic patterns. Species with pelagic eggs (A. triostegus and H. hortulanus) also had correlated patterns of genetic differentiation (Dest); however, a common underlying seascape feature could not be inferred. Additionally, the common influence of the Torres Strait and the Lydekker/Weber's line was identified for the genetic patterns of differentiation for P. coelestis and A. triostegus, despite their differing dispersal traits, and the uncorrelated spatial genetic patterns of these species. Main conclusions: Our study demonstrates the value of a quantitative, hypothesis-testing framework in comparative phylogeography. We found that dispersal traits (egg type and PLD) did not predict which species had similar spatial genetic patterns or which seascape features were associated with these patterns. Furthermore, even in the absence of visually similar, or correlated spatial genetic patterns, our approach enabled us to identify seascape features that had a common influence on the spatial genetic patterns of co-distributed species.
  • Item
    Functional beta diversity of New Zealand fishes: Characterising morphological turnover along depth and latitude gradients, with derivation of functional bioregions
    (1/09/2021) Myers EMV; Eme D; Liggins L; Harvey ES; Roberts CD; Anderson MJ
    Changes in the functional structures of communities are rarely examined along multiple large-scale environmental gradients. Here, we describe patterns in functional beta diversity for New Zealand marine fishes versus depth and latitude, including broad-scale delineation of functional bioregions. We derived eight functional traits related to food acquisition and locomotion and calculated complementary indices of functional beta diversity for 144 species of marine ray-finned fishes occurring along large-scale depth (50–1200 m) and latitudinal gradients (29°–51°S) in the New Zealand Exclusive Economic Zone. We focused on a suite of morphological traits calculated directly from in situ Baited Remote Underwater Stereo-Video (stereo-BRUV) footage and museum specimens. We found that functional changes were primarily structured by depth followed by latitude, and that latitudinal functional turnover decreased with increasing depth. Functional turnover among cells increased with increasing depth distance, but this relationship plateaued for greater depth distances (>750 m). In contrast, functional turnover did not change significantly with increasing latitudinal distance at 700–1200 m depths. Shallow functional bioregions (50–100 m) were distinct at different latitudes, whereas deeper bioregions extended across broad latitudinal ranges. Fishes in shallow depths had a body shape conducive to efficient propulsion, while fishes in deeper depths were more elongated, enabling slow, energy-efficient locomotion, and had large eyes to enhance vision. Environmental filtering may be a primary driver of broad-scale patterns of functional beta diversity in the deep sea. Greater environmental homogeneity may lead to greater functional homogeneity across latitudinal gradients at deeper depths (700–1200 m). We suggest that communities living at depth may follow a ‘functional village hypothesis’, whereby similar key functional niches in fish communities may be maintained over large spatial scales.
  • Item
    Return of the ghosts of dispersal past: Historical spread and contemporary gene flow in the blue sea star Linckia laevigata
    (ROSENSTIEL SCH MAR ATMOS SCI, 1/01/2014) Crandall ED; Treml EA; Liggins L; Gleeson L; Yasuda N; Barber PH; Wörheide G; Riginos C
    Marine animals inhabiting the Indian and Pacific oceans have some of the most extensive species ranges in the world, sometimes spanning over half the globe. These Indo-Pacific species present a challenge for study with both geographic scope and sampling density as limiting factors. Here, we augment and aggregate phylogeographic sampling of the iconic blue sea star, Linckia laevigata Linnaeus, 1758, and present one of the most geographically comprehensive genetic studies of any Indo-Pacific species to date, sequencing 392 base pairs of mitochondrial COI from 791 individuals from 38 locations spanning over 14,000 km. We first use a permutation based multiple-regression approach to simultaneously evaluate the relative influence of historical and contemporary gene flow together with putative barriers to dispersal. We then use a discrete diffusion model of phylogeography to infer the historical migration and colonization routes most likely used by L. laevigata across the Indo-Pacific. We show that estimates of genetic structure have a stronger correlation to geographic distances than to "oceanographic" distances from a biophysical model of larval dispersal, reminding us that population genetic estimates of gene flow and genetic structure are often shaped by historical processes. While the diffusion model was equivocal about the location of the mitochondrial most recent common ancestor (MRC A), we show that gene flow has generally proceeded in a step-wise manner across the Indian and Pacific oceans. We do not find support for previously described barriers at the Sunda Shelf and within Cenderwasih Bay. Rather, the strongest genetic disjunction is found to the east of Cenderwasih Bay along northern New Guinea. These results underscore the importance of comprehensive range-wide sampling in marine phylogeography.© 2014 Rosenstiel School of Marine and Atmospheric Science of the University of Miami.
  • Item
    Introduced alien, range extension or just visiting? Combining citizen science observations and expert knowledge to classify range dynamics of marine fishes
    (1/07/2021) Middleton I; Aguirre JD; Trnski T; Francis M; Duffy C; Liggins L
    Aim: Despite the unprecedented rate of species redistribution during the Anthropocene, there are few monitoring programmes at the appropriate spatial and temporal scale to detect distributional change of marine species and to infer climate- versus human-mediated drivers of change. Here, we present an approach that combines citizen science with expert knowledge to classify out-of-range occurrences for marine fishes as potential range extensions or human-mediated dispersal events. Innovation: Our stepwise approach includes decision trees, scoring and matrices to classify citizen science observations of species occurrences and to provide a measure of confidence and validation using expert knowledge. Our method draws on peer-reviewed literature, knowledge of the species (e.g. contributing to its detectability, and potential to raft with, or foul, man-made structures or debris) and information obtained from citizen science observations (e.g. life stage, number of individuals). Using a case study of suspected out-of-range marine fishes in Aotearoa New Zealand, we demonstrate our approach to defining species’ ranges, assigning confidence to these definitions and considering the species detectability to overcome the data deficiencies that currently hinder monitoring the range dynamics of these species. Our classification of citizen science observations revealed that six of ten species had out-of-range occurrences; one of these was classified as an extralimital vagrant, four species had potentially extended their ranges and one species occurrence was likely due to human-mediated dispersal. Conclusion: The case study of marine fishes in New Zealand validates our approach combining citizen science observations with expert knowledge to infer species range dynamics in real time. Our stepwise approach helps to identify data deficiencies important in informing scientific inferences and management actions and can be refined to suit other data sources, taxonomic groups, geographic settings or extended with new steps and existing tools.
  • Item
    Morphological and genetic divergence supports peripheral endemism and a recent evolutionary history of Chrysiptera demoiselles in the subtropical South Pacific
    (1/06/2022) Liggins L; Kilduff L; Trnski T; Delrieu-Trottin E; Carvajal JI; Arranz V; Planes S; Saenz-Agudelo P; Aguirre JD
    The delineation of species and their evolutionary relationships informs our understanding of biogeography and how regional faunas are assembled. The peripheral geography and local environment of reefs in the subtropical South Pacific likely promotes the allopatric and adaptive divergence of taxa colonising from the tropics; however, the fauna of this region has been relatively understudied. Here, we address the taxonomic and evolutionary relationships among Chrysiptera taxa of the subtropical South Pacific. We use meristic counts, morphometrics and genetic markers to characterise the similarities and differences among four taxa restricted to the South Pacific region that have strikingly different colouration: C. notialis, a taxon restricted to eastern Australia, New Caledonia, Lord Howe Island and Norfolk Island; C. galba, found in the Cook Islands, southern French Polynesia and Pitcairn Islands; and the two disjunct populations of C. rapanui, found in the eastern Pacific around Rapa Nui (Isla de Pascua or Easter Island) and Motu Motiro Hiva (Salas y Gómez) and in the South-western Pacific around Rangitāhua (Kermadec Islands). Our morphometric analysis confirmed that these four taxa, including the two disjunct populations of C. rapanui, are morphologically distinct. However, our genetic analysis revealed that only C. rapanui from Rapa Nui was genetically differentiated, whereas C. rapanui of Rangitāhua, C. galba and C. notialis all shared a common haplotype. Furthermore, none of the taxa could be consistently differentiated based on individual meristic features. Our study reconciles a formerly perplexing and disjunct distribution for C. rapanui, to reveal that C. rapanui is an endemic of Rapa Nui and that the Chrysiptera of French Polynesia, Rangitāhua, and the South-western Pacific have only a very recent history of divergence. Our analyses suggest these subtropical taxa have diverged from a predominantly tropical Chrysiptera genus in morphological features important in determining colonisation success, locomotion and feeding ecology.
  • Item
    Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved
    (Elsevier Ltd, 2020-08) Hoban S; Bruford M; D'Urban Jackson J; Lopes-Fernandes M; Heuertz M; Hohenlohe PA; Paz-Vinas I; Sjögren-Gulve P; Segelbacher G; Vernesi C; Aitken S; Bertola LD; Bloomer P; Breed M; Rodríguez-Correa H; Funk WC; Grueber CE; Hunter ME; Jaffe R; Liggins L; Mergeay J; Moharrek F; O'Brien D; Ogden R; Palma-Silva C; Pierson J; Ramakrishnan U; Simo-Droissart M; Tani N; Waits L; Laikre L
    The 196 parties to the Convention on Biological Diversity (CBD) will soon agree to a post-2020 global framework for conserving the three elements of biodiversity (genetic, species, and ecosystem diversity) while ensuring sustainable development and benefit sharing. As the most significant global conservation policy mechanism, the new CBD framework has far-reaching consequences- it will guide conservation actions and reporting for each member country until 2050. In previous CBD strategies, as well as other major conservation policy mechanisms, targets and indicators for genetic diversity (variation at the DNA level within species, which facilitates species adaptation and ecosystem function) were undeveloped and focused on species of agricultural relevance. We assert that, to meet global conservation goals, genetic diversity within all species, not just domesticated species and their wild relatives, must be conserved and monitored using appropriate metrics. Building on suggestions in a recent Letter in Science (Laikre et al., 2020) we expand argumentation for three new, pragmatic genetic indicators and modifications to two current indicators for maintaining genetic diversity and adaptive capacity of all species, and provide guidance on their practical use. The indicators are: 1) the number of populations with effective population size above versus below 500, 2) the proportion of populations maintained within species, 3) the number of species and populations in which genetic diversity is monitored using DNA-based methods. We also present and discuss Goals and Action Targets for post-2020 biodiversity conservation which are connected to these indicators and underlying data. These pragmatic indicators and goals have utility beyond the CBD; they should benefit conservation and monitoring of genetic diversity via national and global policy for decades to come.
  • Item
    Larval traits show temporally consistent constraints, but are decoupled from postsettlement juvenile growth, in an intertidal fish
    (John Wiley and Sons, Inc on behalf of the British Ecological Society, 8/08/2018) Thia JA; Riginos C; Liggins L; Figueira WF; McGuigan K
    1. Complex life cycles may evolve to dissociate distinct developmental phases in an organism's lifetime. However, genetic or environmental factors may restrict trait independence across life stages, constraining ontogenetic trajectories. Quantifying covariance across life stages and their temporal variability is fundamental in understanding life-history phenotypes and potential distributions and consequences for selection. 2. We studied developmental constraints in an intertidal fish (Bathygobius cocosensis: Gobiidae) with a discrete pelagic larval phase and benthic juvenile phase. We tested whether traits occurring earlier in life affected those expressed later, and whether larval traits were decoupled from postsettlement juvenile traits. Sampling distinct cohorts from three annual breeding seasons afforded tests of temporally variability in trait covariance. 3. From otoliths (fish ear stones), we measured hatch size, larval duration, pelagic growth (larval traits) and early postsettlement growth (juvenile trait) in 124 juvenile B. cocoensis. We used path analyses to model trait relationships with respect to their chronological expression, comparing models among seasons. We also modelled the effect of season and hatch date on each individual trait to quantify their inherent variability. 4. Our path analyses demonstrated a decoupling of larval traits on juvenile growth. Within the larval phase, longer larval durations resulted in greater pelagic growth, and larger size-at-settlement. There was also evidence that larger hatch size might reduce larval durations, but this effect was only marginally significant. Although pelagic and postsettlement growth were decoupled, pelagic growth had postsettlement consequences: individuals with high pelagic growth were among the largest fish at settlement, and remained among the largest early postsettlement. We observed no evidence that trait relationships varied among breeding seasons, but larval duration differed among breeding seasons, and was shorter for larvae hatching later within each season. 5. Overall, we demonstrate mixed support for the expectation that traits in different life stages are independent. While postsettlement growth was decoupled from larval traits, pelagic development had consequences for the size of newly settled juveniles. Temporal consistency in trait covariances implies that genetic and/or environmental factors influencing them were stable over our three-year study. Our work highlights the importance of individual developmental experiences and temporal variability in understanding population distributions of life-history traits.
  • Item
    Vicariance and dispersal across an intermittent barrier: Population genetic structure of marine animals across the Torres Strait land bridge
    (SPRINGER, 1/12/2011) Mirams AGK; Treml EA; Shields JL; Liggins L; Riginos C
    Biogeographic barriers, some transitory in duration, are likely to have been important contributing factors to modern marine biodiversity in the Indo-Pacific region. One such barrier was the Torres Strait land bridge between continental Australia and New Guinea that persisted through much of the late Pleistocene and separated Indian and Pacific Ocean taxa. Here, we examine the patterns of mitochondrial DNA diversity for marine animals with present-day distributions spanning the Torres Strait. Specifically, we investigate whether there are concordant signatures across species, consistent with either vicariance or recent colonization from either ocean basin. We survey four species of reef fishes (Apogon doederleini, Pomacentrus coelestis, Dascyllus trimaculatus, and Acanthurus triostegus) for mtDNA cytochrome oxidase 1 and control region variation and contrast these results to previous mtDNA studies in diverse marine animals with similar distributions. We find substantial genetic partitioning (estimated from F-statistics and coalescent approaches) between Indian and Pacific Ocean populations for many species, consistent with regional persistence through the late Pleistocene in both ocean basins. The species-specific estimates of genetic divergence, however, vary greatly and for reef fishes we estimate substantially different divergence times among species. It is likely that Indian and Pacific Ocean populations have been isolated for multiple glacial cycles for some species, whereas for other species genetic connections have been more recent. Regional estimates of genetic diversity and directionality of gene flow also vary among species. Thus, there is no apparent consistency among historical patterns across the Torres Strait for these co-distributed marine animals. © 2011 Springer-Verlag.