Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item Initialization-similarity clustering algorithm(Springer Science+Business Media, LLC, 2019-12) Liu T; Zhu J; Zhou J; Zhu Y; Zhu XClassic k-means clustering algorithm randomly selects centroids for initialization to possibly output unstable clustering results. Moreover, random initialization makes the clustering result hard to reproduce. Spectral clustering algorithm is a two-step strategy, which first generates a similarity matrix and then conducts eigenvalue decomposition on the Laplacian matrix of the similarity matrix to obtain the spectral representation. However, the goal of the first step in the spectral clustering algorithm does not guarantee the best clustering result. To address the above issues, this paper proposes an Initialization-Similarity (IS) algorithm which learns the similarity matrix and the new representation in a unified way and fixes initialization using the sum-of-norms regularization to make the clustering more robust. The experimental results on ten real-world benchmark datasets demonstrate that our IS clustering algorithm outperforms the comparison clustering algorithms in terms of three evaluation metrics for clustering algorithm including accuracy (ACC), normalized mutual information (NMI), and Purity.Item Joint Spectral Clustering based on Optimal Graph and Feature Selection(Springer Nature Switzerland AG, 2021-02) Zhu J; Jang-Jaccard J; Liu T; Zhou JRedundant features and outliers (noise) included in the data points for a machine learning clustering model heavily influences the discovery of more distinguished features for clustering. To solve this issue, we propose a spectral new clustering method to consider the feature selection with the L2 , 1-norm regularization as well as simultaneously learns orthogonal representations for each sample to preserve the local structures of data points. Our model also solves the issue of out-of-sample, where the training process does not output an explicit model to predict unseen data points, along with providing an efficient optimization method for the proposed objective function. Experimental results showed that our method on twelve data sets achieves the best performance compared with other similar models.Item Parameter-Free Extreme Learning Machine for Imbalanced Classification Authors Li, L - China Agric(Springer Science+Business Media, LLC, 2020-12) Li L; Zhao K; Sun R; Gan J; Yuan G; Liu TImbalanced data distribution is a common problem in classification situations, that is the number of samples in different categories varies greatly, thus increasing the classification difficulty. Although many methods have been used for the imbalanced data classification, there are still problems with low classification accuracy in minority class and adding additional parameter settings. In order to increase minority classification accuracy in imbalanced problem, this paper proposes a parameter-free weighting learning mechanism based on extreme learning machine and sample loss values to balance the number of samples in each training step. The proposed method mainly includes two aspects: the sample weight learning process based on the sample losses; the sample selection process and weight update process according to the constraint function and iterations. Experimental results on twelve datasets from the KEEL repository show that the proposed method could achieve more balanced and accurate results than other compared methods in this work.Item Weighted adjacent matrix for K-means clustering(Springer Science+Business Media, LLC, 2019-12) Zhou J; Liu T; Zhu JK-means clustering is one of the most popular clustering algorithms and has been embedded in other clustering algorithms, e.g. the last step of spectral clustering. In this paper, we propose two techniques to improve previous k-means clustering algorithm by designing two different adjacent matrices. Extensive experiments on public UCI datasets showed the clustering results of our proposed algorithms significantly outperform three classical clustering algorithms in terms of different evaluation metrics.
