Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Cerebrovascular and cardiovascular responses to the Valsalva manoeuvre during hyperthermia.(John Wiley & Sons Ltd on behalf of Scandinavian Society of Clinical Physiology and Nuclear Medicine, 2023-06-18) Perry BG; Korad S; Mündel TBACKGROUND: During hyperthermia, the perturbations in mean arterial blood pressure (MAP) produced by the Valsalva manoeuvre (VM) are more severe. However, whether these more severe VM-induced changes in MAP are translated to the cerebral circulation during hyperthermia is unclear. METHODS: Healthy participants (n = 12, 1 female, mean ± SD: age 24 ± 3 years) completed a 30 mmHg (mouth pressure) VM for 15 s whilst supine during normothermia and mild hyperthermia. Hyperthermia was induced passively using a liquid conditioning garment with core temperature measured via ingested temperature sensor. Middle cerebral artery blood velocity (MCAv) and MAP were recorded continuously during and post-VM. Tieck's autoregulatory index was calculated from the VM responses, with pulsatility index, an index of pulse velocity (pulse time) and mean MCAv (MCAvmean ) also calculated. RESULTS: Passive heating significantly raised core temperature from baseline (37.9 ± 0.2 vs. 37.1 ± 0.1°C at rest, p < 0.01). MAP during phases I through III of the VM was lower during hyperthermia (interaction effect p < 0.01). Although an interaction effect was observed for MCAvmean (p = 0.02), post-hoc differences indicated only phase IIa was lower during hyperthermia (55 ± 12 vs. 49.3 ± 8 cm s- 1 for normothermia and hyperthermia, respectively, p = 0.03). Pulsatility index was increased 1-min post-VM in both conditions (0.71 ± 0.11 vs. 0.76 ± 0.11 for pre- and post-VM during normothermia, respectively, p = 0.02, and 0.86 ± 0.11 vs. 0.99 ± 0.09 for hyperthermia p < 0.01), although for pulse time only main effects of time (p < 0.01), and condition (p < 0.01) were apparent. CONCLUSION: These data indicate that the cerebrovascular response to the VM is largely unchanged by mild hyperthermia.Item Measurement error of self-paced exercise performance in athletic women is not affected by ovulatory status or ambient environment(American Physiological Society, 2021-11) Zheng H; Badenhorst CE; Lei T-H; Muhamed AMC; Liao Y-H; Amano T; Fujii N; Nishiyasu T; Kondo N; Mündel TMeasurement error(s) of exercise tests for women are severely lacking in the literature. The purpose of this investigation was to 1) determine whether ovulatory status or ambient environment were moderating variables when completing a 30-min self-paced work trial and 2) provide test-retest norms specific to athletic women. A retrospective analysis of three heat stress studies was completed using 33 female participants (31 ± 9 yr, 54 ± 10 mL·min−1·kg−1) that yielded 130 separate trials. Participants were classified as ovulatory (n = 19), anovulatory (n = 4), and oral contraceptive pill users (n = 10). Participants completed trials ∼2 wk apart in their (quasi-) early follicular and midluteal phases in two of moderate (1.3 ± 0.1 kPa, 20.5 ± 0.5°C, 18 trials), warm-dry (2.2 ± 0.2 kPa, 34.1 ± 0.2°C, 46 trials), or warm-humid (3.4 ± 0.1 kPa, 30.2 ± 1.1°C, 66 trials) environments. We quantified reliability using limits of agreement, intraclass correlation coefficient (ICC), standard error of measurement (SEM), and coefficient of variation (CV). Test-retest reliability was high, clinically valid (ICC = 0.90, P < 0.01), and acceptable with a mean CV of 4.7%, SEM of 3.8 kJ (2.1 W), and reliable bias of −2.1 kJ (−1.2 W). The various ovulatory status and contrasting ambient conditions had no appreciable effect on reliability. These results indicate that athletic women can perform 30-min self-paced work trials ∼2 wk apart with an acceptable and low variability irrespective of their hormonal status or heat-stressful environments. NEW & NOTEWORTHY This study highlights that aerobically trained women perform 30-min self-paced work trials ∼2 wk apart with acceptably low variability and their hormonal/ovulatory status and the introduction of greater ambient heat and humidity do not moderate this measurement error.
