Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Pasture production–diversity relationships in a kānuka silvopastoral system(John Wiley & Sons Ltd on behalf of British Ecological Society, 2023-04-09) Mackay-Smith TH; López IF; Burkitt LL; Reid JI; Wagg CSilvopastoral systems have great potential for forming multifunctional landscapes that provide a range of economic and environmental benefits to pastoral land. However, pasture production–diversity relationships in silvopastures require further exploration. This study measures how pasture functional group production, pasture species diversity and pasture functional diversity (FD) are impacted by trees in a novel native silvopastoral system in New Zealand hill country with kānuka (Kunzea spp.). Silvopastoral trees facilitated the growth of fast-growing competitor functional groups (Lolium perenne, Dactylis glomerata and high fertility annuals: Bromus hordeaceus and Critesion murinum), because of positive impacts on soil fertility, organic matter and porosity. Shannon diversity, species richness and species evenness were significantly less in the more productive pastoral environment under the trees, but functional richness, functional evenness and functional dispersion were similar between kānuka pasture and open pasture. These results show that silvopastures can increase pasture production by promoting the growth of competitive pasture functional groups, and that reduced species diversity under silvopastoral trees does not necessarily impact FD in the context of production. Moreover, species indices overestimated diversity reductions under the trees compared to functional indices. Thus, considering FD in silvopastoral systems is integral for not misinterpreting diversity outcomes.Item A Framework for Reviewing Silvopastoralism: A New Zealand Hill Country Case Study(MDPI (Basel, Switzerland), 2021-12-14) Mackay-Smith TH; Burkitt L; Reid J; López IF; Phillips CSilvopastoral systems can be innovative solutions to agricultural environmental degradation, especially in hilly and mountainous regions. A framework that expresses the holistic nature of silvopastoral systems is required so research directions can be unbiased and informed. This paper presents a novel framework that relates the full range of known silvopastoral outcomes to bio-physical tree attributes, and uses it to generate research priorities for a New Zealand hill country case study. Current research is reviewed and compared for poplar (Populus spp.), the most commonly planted silvopastoral tree in New Zealand hill country, and kānuka (Kunzea spp.), a novel and potentially promising native alternative. The framework highlights the many potential benefits of kānuka, many of which are underappreciated hill country silvopastoral outcomes, and draws attention to the specific outcome research gaps for poplar, despite their widespread use. The framework provides a formalised tool for reviewing and generating research priorities for silvopastoral trees, and provides a clear example of how it can be used to inform research directions in silvopastoral systems, globally.
