Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item Use of butorphanol and diprenorphine to counter respiratory impairment in the immobilised white rhinoceros (Ceratotherium simum)(African Online Scientific Information Systems (Pty) Ltd t/a AOSIS, 2018-10-18) Meyer LCR; Fuller A; Hofmeyr M; Buss P; Miller M; Haw AOpioid-induced immobilisation results in severe respiratory impairment in the white rhinoceros. It has therefore been attempted in the field to reverse this impairment with the use of opioid agonist-antagonists, such as nalorphine, nalbuphine, butorphanol and diprenorphine; however, the efficacy of some of these treatments has yet to be determined. The efficacy of butorphanol, either alone or in combination with diprenorphine both with and without oxygen insufflation, in alleviating opioid-induced respiratory impairment was evaluated. The study was performed in two parts: a boma trial and a field trial. Rhinoceroses were immobilised specifically for the study, according to a strict protocol to minimise confounding variables. A two-way analysis of variance was used to compare the physiological responses of the rhinoceroses to the different treatments and their effects over time. The intravenous administration of butorphanol (at 3.3 mg per mg etorphine) plus diprenorphine (at 0.4 mg per mg etorphine) did not offer any advantage over butorphanol (at 15 mg per mg etorphine) alone with regard to improving PaO2, PaCO2 and respiratory rates in etorphine-immobilised white rhinoceroses. Both butorphanol + diprenorphine + oxygen and butorphanol + oxygen, at the doses used, significantly improved the etorphine-induced hypoxaemia in both boma- and field-immobilised white rhinoceroses. Clinically acceptable oxygenation in field-immobilised white rhinoceroses can be achieved by using either treatment regimen, provided that it is combined with oxygen insufflation.Item Muscle tremors observed in white rhinoceroses immobilised with either etorphine-azaperone or etorphine-midazolam: An initial study(AOSIS, 2021-06-28) Nasr M; Meyer LCR; Buss P; Fàbregas MC; Gleed RD; Boesch JM; Pohlin FEtorphine-azaperone is the most commonly used drug combination for chemical immobilisation of free-ranging white rhinoceroses, but causes several profound physiological disturbances, including muscle tremors. The addition of benzodiazepine sedatives, such as midazolam, has been proposed to reduce the muscular rigidity and tremors in immobilised rhinoceroses. Twenty-three free-ranging, sub-adult white rhinoceros bulls were darted and captured using a combination of etorphine plus either azaperone or midazolam. Skeletal muscle tremors were visually evaluated and scored by an experienced veterinarian, and tremor scores and distance run were compared between groups using the Wilcoxon rank sum test. No statistical differences were observed in tremor scores (p = 0.435) or distance run (p = 0.711) between the two groups, and no correlation between these variables was detected (r = -0.628; p = 0.807). Etorphine-midazolam was as effective as etorphine-azaperone at immobilising rhinoceroses, with animals running similar distances. Although the addition of midazolam to the etorphine did not reduce tremor scores compared to azaperone, it might have other beneficial immobilising effects in rhinoceroses, and further investigation is necessary to elucidate possible methods of reducing muscle tremoring during chemical immobilisation of rhinoceroses.Item Etorphine induces pathophysiology in immobilized white rhinoceros through sympathomimesis that is attenuated by butorphanol(y Oxford University Press and the Society for Experimental Biology, 2025-04-04) Boesch JM; Gleed RD; Buss PE; Tordiffe ASW; Zeiler GE; Miller MA; Viljoen F; Harvey BH; Parry SA; Meyer LCR; Madliger CWhite rhinoceros are a sentinel species for important ecosystems in southern Africa. Their conservation requires active management of their population, which, in turn, requires immobilization of individuals with an ultra-potent opioid such as etorphine. Unfortunately, when immobilized with etorphine, they develop severe hypoxaemia that may contribute to morbidity and mortality. We hypothesized that (i) etorphine causes sympathetic upregulation that is responsible for physiological complications that produce hypoxaemia and (ii) butorphanol, a partial μ opioid agonist, mitigates sympathetic upregulation, thereby improving arterial oxygen content (CaO2) and delivery (DO2). Six subadult male white rhinoceros were administered two treatments in random order: etorphine-saline (ES) and etorphine-butorphanol (EB). After intramuscular etorphine (~2.6 μg kg−1), rhinoceros became recumbent (time 0 min [t0]) and were instrumented. Baseline data were collected at t30, butorphanol (0.026 mg/kg) or 0.9% saline was administered intravenously at t37, and data were collected again at t40 and t50. At baseline, plasma noradrenaline concentration was >40 ng ml−1, approximately twice that of non-immobilized rhinoceros (t test, P < 0.05); cardiac output (Qt, by thermodilution) and metabolic rate (VO2, by spirometry/indirect calorimetry) were greater than predicted allometrically (t test, P < 0.05), and pulmonary hypertension was present. After butorphanol, noradrenaline concentration remained greater than in non-immobilized rhinoceros; in EB, CaO2 was greater, while Qt, DO2, VO2, and pulmonary pressures were less than in ES (linear mixed effect model, all P < 0.05). Increased noradrenaline concentration with increased Qt and hypermetabolism supports etorphine-induced sympathetic upregulation. Butorphanol partly attenuated these effects, increasing CaO2 but reducing Qt and, thus, DO2. Since plasma noradrenaline concentration remained increased after butorphanol administration while Qt, DO2, and VO2 decreased, a pathway independent of plasma noradrenaline concentration might contribute to the cardiopulmonary and hypermetabolic effects of etorphine. Developing treatments to combat this sympathomimesis could reduce capture-related morbidity in white rhinoceros.Item A comparison of immobilisation quality and cardiorespiratory effects of etorphine-azaperone versus etorphine-midazolam combinations in blesbok(Medpharm Publications on behalf of the South African Veterinary Association, 2022-06-01) Laubscher LL; Meyer LCR; Laurence M; Raath JP; Pfitzer SThe study compared immobilisation of blesbok (Damaliscus pygargus phillipsi) with etorphine and azaperone vs etorphine and midazolam. Twelve female blesbok, weighing 59.4 ± 2.8 kg, were used. Each animal randomly received Treatment 1 (T1) (etorphine, 0.07 ± 0.003 mg/kg + azaperone, 0.36 ± 0.02 mg/kg) and Treatment 2 (T2) (etorphine, 0.07 ± 0.003 mg/kg + midazolam, 0.20 ± 0.01 mg/kg) with a one-week washout period between treatments. Induction times were recorded followed by physiological monitoring for 45 minutes of immobilisation. Immobilisation was reversed with naltrexone (20 mg per mg etorphine). Recovery times were also recorded. Induction, immobilisation and recovery were scored with subjective measures. Inductions and recoveries did not differ between combinations, but the quality of immobilisation was significantly better with T1. Rectal temperature and blood pressure were significantly lower during T1. Both treatments resulted in severe hypoxaemia and impaired gas exchange, although overall hypoxaemia was more pronounced for T1. Animals treated with T2, however, exhibited a deterioration in respiration as the monitoring period progressed, possibly as a result of impaired ventilatory muscle function due to the effects of midazolam. Both combinations are suitable for adequate immobilisation of blesbok and should be selected based on the specific capture situation. Supplementation with oxygen is highly recommended.Item Evaluation of two different etorphine doses combined with azaperone in blesbok (damaliscus pygargus phillipsi) immobilisation(South African Veterinary Association, 2021-12-09) Gaudio E; Laubscher LL; Meyer LCR; Hoffman LC; Raath JP; Pfitzer SChemical immobilisation is essential for veterinarians to perform medical procedures in wild African ungulates. Potent opioids combined with neuroleptic drugs are most often used for this purpose. The present study aimed at comparing the quality of immobilisation and effects on physiological variables between a high (high etorphine-azaperone [HE]: 0.09 mg kg-1) and low etorphine dose (low etorphine-azaperone [LE]: 0.05 mg kg-1), both combined with azaperone (0.35 mg kg-1), in 12 adult female boma-acclimatised blesbok. It was hypothesised that a reduction in etorphine's dose in combination with azaperone would result in less cardiorespiratory impairment but likely worsen the quality of immobilisation. Both treatments resulted in rapid induction and recovery times. Overall inter-treatment differences occurred in pulse rate (HE and LE: 52 ± 15 and 44 ± 11 beats minute-1, p < 0.0001), respiratory rate (HE and LE: 15 ± 4 and 17 ± 4 breaths minute-1, p < 0.006), partial pressure of exhaled carbon dioxide (HE and LE: 62.0 ± 5.0 and 60.0 ± 5.6 millimetre of mercury [mmHg], p < 0.028) and arterial carbon dioxide (HE and LE: 58.0 ± 4.5 and 55.0 ± 3.9 mmHg, p < 0.002). Both HE and LE led to bradycardia, hypertension and marked hypoxia to a similar extent. Furthermore, quality of induction, immobilisation and recovery were similar in both treatments. The role of azaperone in the development of cardiorespiratory compromise and gas exchange impairment that occurred when these combinations were used is still unclear. Further studies are recommended to elucidate drug- and dose-specific physiological effects in immobilised antelope.
