Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Exposure to drinking water trihalomethanes and nitrate and the risk of brain tumours in young people(Elsevier Inc, 2021-09) Zumel-Marne A; Castaño-Vinyals G; Alguacil J; Villanueva CM; Maule M; Gracia-Lavedan E; Momoli F; Krewski D; Mohipp C; Petridou E; Bouka E; Merletti F; Migliore E; Piro S; Ha M; 't Mannetje A; Eng A; Aragones N; Cardis EBrain tumours (BTs) are one of the most frequent tumour types in young people. We explored the association between tap water, exposure to trihalomethanes (THM) and nitrate and neuroepithelial BT risk in young people. Analysis of tap water consumption were based on 321 cases and 919 appendicitis controls (10-24 years old) from 6 of the 14 participating countries in the international MOBI-Kids case-control study (2010-2016). Available historical residential tap water concentrations of THMs and nitrate, available from 3 countries for 86 cases and 352 controls and 85 cases and 343 for nitrate, respectively, were modelled and combined with the study subjects' personal consumption patterns to estimate ingestion and residential exposure levels in the study population (both pre- and postnatal). The mean age of participants was 16.6 years old and 56% were male. The highest levels and widest ranges for THMs were found in Spain (residential and ingested) and Italy and in Korea for nitrate. There was no association between BT and the amount of tap water consumed and the showering/bathing frequency. Odds Ratios (ORs) for BT in relation to both pre- and postnatal residential and ingestion levels of THMs were systematically below 1 (OR = 0.37 (0.08-1.73)) for postnatal average residential THMs higher than 66 μg/L. For nitrate, all ORs were above 1 (OR = 1.80 (0.91-3.55)) for postnatal average residential nitrate levels higher than 8.5 mg/L, with a suggestion of a trend of increased risk of neuroepithelial BTs with increasing residential nitrate levels in tap water, which appeared stronger in early in life. This, to our knowledge, is the first study on this topic in young people. Further research is required to clarify the observed associations.Item Respiratory symptoms in children living near busy roads and their relationship to vehicular traffic: results of an Italian multicenter study (SIDRIA 2).(BIOMED CENTRAL LTD, 2009-06-18) Migliore E; Berti G; Galassi C; Pearce N; Forastiere F; Calabrese R; Armenio L; Biggeri A; Bisanti L; Bugiani M; Cadum E; Chellini E; Dell'orco V; Giannella G; Sestini P; Corbo G; Pistelli R; Viegi G; Ciccone G; SIDRIA-2 Collaborative GroupBACKGROUND: Epidemiological studies have provided evidence that exposure to vehicular traffic increases the prevalence of respiratory symptoms and may exacerbate pre-existing asthma in children. Self-reported exposure to road traffic has been questioned as a reliable measurement of exposure to air pollutants. The aim of this study was to investigate whether there were specific effects of cars and trucks traffic on current asthma symptoms (i.e. wheezing) and cough or phlegm, and to examine the validity of self-reported traffic exposure. METHODS: The survey was conducted in 2002 in 12 centers in Northern, Center and Southern Italy, different in size, climate, latitude and level of urbanization. Standardized questionnaires filled in by parents were used to collect information on health outcomes and exposure to traffic among 33,632 6-7 and 13-14 years old children and adolescents. Three questions on traffic exposure were asked: the traffic in the zone of residence, the frequency of truck and of car traffic in the street of residence. The presence of a possible response bias for the self-reported traffic was evaluated using external validation (comparison with measurements of traffic flow in the city of Turin) and internal validations (matching by census block, in the cities of Turin, Milan and Rome). RESULTS: Overall traffic density was weakly associated with asthma symptoms but there was a stronger association with cough or phlegm (high traffic density OR = 1.24; 95% CI: 1.04, 1.49). Car and truck traffic were independently associated with cough or phlegm. The results of the external validation did not support the existence of a reporting bias for the observed associations, for all the self-reported traffic indicators examined. The internal validations showed that the observed association between traffic density in the zone of residence and respiratory symptoms did not appear to be explained by an over reporting of traffic by parents of symptomatic subjects. CONCLUSION: Children living in zones with intense traffic are at higher risk for respiratory effects. Since population characteristics are specific, the results of validation of studies on self-reported traffic exposure can not be generalized.
