Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    When less is more: shortening the Lpp protein leads to increased vancomycin resistance in Escherichia coli.
    (Springer Nature Limited, 2023-12-01) Wykes H; Le VVH; Olivera C; Rakonjac J
    Vancomycin is a naturally occurring cell-wall-targeting glycopeptide antibiotic. Due to the low potency of this antibiotic against Gram-negative pathogens, such as Escherichia coli, there is a limited knowledge about interactions between vancomycin and this group of bacteria. Here, we show that an in-frame 63 bp deletion of the lpp gene caused a fourfold increase in vancomycin resistance in E. coli. The resulting protein, LppΔ21, is 21 amino acids shorter than the wild-type Lpp, a helical structural lipoprotein that controls the width of the periplasmic space through its length. The mutant remains susceptible to synergistic growth inhibition by combination of furazolidone and vancomycin; with furazolidone decreasing the vancomycin MIC by eightfold. These findings have clinical relevance, given that the vancomycin concentration required to select the lpp mutation is reachable during typical vancomycin oral administration for treating Clostridioides difficile infections. Combination therapy with furazolidone, however, is likely to prevent emergence and outgrowth of the lpp-mutated Gram-negative coliforms, avoiding exacerbation of the patient's condition during the treatment.
  • Item
    In vitro synergy of 5-nitrofurans, vancomycin and sodium deoxycholate against Gram-negative pathogens
    (Microbiology Society, 2021-01-15) Olivera C; Le VVH; Davenport C; Rakonjac J
    Introduction. There is an urgent need for effective therapies against bacterial infections, especially those caused by antibiotic-resistant Gram-negative pathogens. Hypothesis. Synergistic combinations of existing antimicrobials show promise due to their enhanced efficacies and reduced dosages which can mitigate adverse effects, and therefore can be used as potential antibacterial therapy. Aim. In this study, we sought to characterize the in vitro interaction of 5-nitrofurans, vancomycin and sodium deoxycholate (NVD) against pathogenic bacteria. Methodology. The synergy of the NVD combination was investigated in terms of growth inhibition and bacterial killing using checkerboard and time-kill assays, respectively. Results. Using a three-dimensional checkerboard assay, we showed that 5-nitrofurans, sodium deoxycholate and vancomycin interact synergistically in the growth inhibition of 15 out of 20 Gram-negative strains tested, including clinically significant pathogens such as carbapenemase-producing Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii, and interact indifferently against the Gram-positive strains tested. The time-kill assay further confirmed that the triple combination was bactericidal in a synergistic manner. Conclusion. This study demonstrates the synergistic effect of 5-nitrofurans, sodium deoxycholate and vancomycin against Gram-negative pathogens and highlights the potential of the combination as a treatment for Gram-negative and Gram-positive infections.