Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    A weight optimization-based transfer learning approach for plant disease detection of New Zealand vegetables
    (Frontiers Media, 25/10/2022) Saleem MH; Potgieter J; Arif K
    Deep learning (DL) is an effective approach to identifying plant diseases. Among several DL-based techniques, transfer learning (TL) produces significant results in terms of improved accuracy. However, the usefulness of TL has not yet been explored using weights optimized from agricultural datasets. Furthermore, the detection of plant diseases in different organs of various vegetables has not yet been performed using a trained/optimized DL model. Moreover, the presence/detection of multiple diseases in vegetable organs has not yet been investigated. To address these research gaps, a new dataset named NZDLPlantDisease-v2 has been collected for New Zealand vegetables. The dataset includes 28 healthy and defective organs of beans, broccoli, cabbage, cauliflower, kumara, peas, potato, and tomato. This paper presents a transfer learning method that optimizes weights obtained through agricultural datasets for better outcomes in plant disease identification. First, several DL architectures are compared to obtain the best-suited model, and then, data augmentation techniques are applied. The Faster Region-based Convolutional Neural Network (RCNN) Inception ResNet-v2 attained the highest mean average precision (mAP) compared to the other DL models including different versions of Faster RCNN, Single-Shot Multibox Detector (SSD), Region-based Fully Convolutional Networks (RFCN), RetinaNet, and EfficientDet. Next, weight optimization is performed on datasets including PlantVillage, NZDLPlantDisease-v1, and DeepWeeds using image resizers, interpolators, initializers, batch normalization, and DL optimizers. Updated/optimized weights are then used to retrain the Faster RCNN Inception ResNet-v2 model on the proposed dataset. Finally, the results are compared with the model trained/optimized using a large dataset, such as Common Objects in Context (COCO). The final mAP improves by 9.25% and is found to be 91.33%. Moreover, the robustness of the methodology is demonstrated by testing the final model on an external dataset and using the stratified k-fold cross-validation method.
  • Item
    Weed Identification by Single-Stage and Two-Stage Neural Networks: A Study on the Impact of Image Resizers and Weights Optimization Algorithms
    (Frontiers Media, 25/04/2022) Saleem MH; Velayudhan KK; Potgieter J; Arif K
    The accurate identification of weeds is an essential step for a site-specific weed management system. In recent years, deep learning (DL) has got rapid advancements to perform complex agricultural tasks. The previous studies emphasized the evaluation of advanced training techniques or modifying the well-known DL models to improve the overall accuracy. In contrast, this research attempted to improve the mean average precision (mAP) for the detection and classification of eight classes of weeds by proposing a novel DL-based methodology. First, a comprehensive analysis of single-stage and two-stage neural networks including Single-shot MultiBox Detector (SSD), You look only Once (YOLO-v4), EfficientDet, CenterNet, RetinaNet, Faster Region-based Convolutional Neural Network (RCNN), and Region-based Fully Convolutional Network (RFCN), has been performed. Next, the effects of image resizing techniques along with four image interpolation methods have been studied. It led to the final stage of the research through optimization of the weights of the best-acquired model by initialization techniques, batch normalization, and DL optimization algorithms. The effectiveness of the proposed work is proven due to a high mAP of 93.44% and validated by the stratified k-fold cross-validation technique. It was 5.8% improved as compared to the results obtained by the default settings of the best-suited DL architecture (Faster RCNN ResNet-101). The presented pipeline would be a baseline study for the research community to explore several tasks such as real-time detection and reducing the computation/training time. All the relevant data including the annotated dataset, configuration files, and inference graph of the final model are provided with this article. Furthermore, the selection of the DeepWeeds dataset shows the robustness/practicality of the study because it contains images collected in a real/complex agricultural environment. Therefore, this research would be a considerable step toward an efficient and automatic weed control system.