Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Alfalfa adapts to soil nutrient surplus and deficiency by adjusting the stoichiometric characteristics of main organs and nutrient reabsorption
    (BioMed Central Ltd, 2025-12-01) Sun Y; Hui J; Yang K; Wei K; Wang X; Cartmill AD; López IF; Qi Y; Ma C; Zhang Q
    Accurate nutrient diagnosis is essential for simulating alfalfa (Medicago sativa L.) yield and optimizing resource-use efficiency under diverse soil nutrient conditions. However, limited knowledge exists about how fertilization impacts soil–plant nutrient stoichiometric constraints, especially in nutrient-deficient gray desert soils. This study conducted a field experiment with four nitrogen (N) application rates: 0, 60, 120, and 180 kg N∙ha−1 and four phosphorus (P) application rates: 0, 50, 100, and 150 kg P2O5∙ha−1. We assessed changes in the nutrient limitation characteristics of alfalfa and identified its primary driving factors, focusing on soil nutrient perspectives, nutrient distribution in main organs (leaves, shoots, and roots) and nutrient resorption. The results demonstrated that fertilization increased N and P concentrations in various alfalfa organs while reducing carbon (C) content. A strong synergy was observed in nutrient concentrations across the different alfalfa organs. With increasing application of single-nutrient fertilizers, the C:N and C:P ratios in alfalfa organs decreased, while the N:P ratio stabilized under conditions of sufficient or co-limiting soil N and P. Alfalfa N:P ratios under different fertilization treatments were 4.89–5.46 in roots, 6.19–8.45 in stems, and 9.10–15.16 in leaves. The C:N and C:P ratios were significantly negatively correlated with alfalfa yield, but the relationship between the N:P ratio and yield was not statistically significant. Soil nutrient status positively influenced N and P concentrations in leaves, stems, and roots, however, their effect on stoichiometric ratios was primarily mediated through indirect effects on corresponding organ-level nutrients. Moreover, soil nutrients directly or indirectly explained 98% of the variation in nutrient resorption in leaves. In conclusion, fertilization indirectly affects the stoichiometric characteristics of alfalfa organs via soil nutrients. Adjusting fertilizer nutrient ratios can mitigate nutrient limitations in both soil and alfalfa, providing valuable insights for fertilizer formulation, timing of fertilizer application, and fertilization application strategies. Highlights 1.Fertilization alters the C-N-P stoichiometry of the soil–plant system. 2.The stoichiometric characteristics and ratios of different organs exhibit a certain degree of synergy. 3.Stoichiometric ratios can represent nutrient limitation to a certain extent. 4.Soil nutrient changes affect the stoichiometric characteristics and ratios of alfalfa.
  • Item
    Can the use of digital technology improve the cow milk productivity in large dairy herds? Evidence from China's Shandong Province
    (Frontiers Media S.A., 2022-12-02) Qi Y; Han J; Shadbolt NM; Zhang Q; Naseer MAUR
    Introduction: Improving milk productivity is essential for ensuring sustainable food production. However, the increasing difficulty of supervision and management, which is associated with farm size, is one of the major factors causing the inverse relationship between size and productivity. Digital technology, which has grown in popularity in recent years, can effectively substitute for manual labor and significantly improve farmers' monitoring and management capacities, potentially addressing the inverse relationship. Methods: Based on data from a survey of farms in Shandong Province in 2020, this paper employs a two-stage least squares regression model to estimate the impact of herd size on dairy cow productivity and investigate how the adoption of digital technology has altered the impact of herd size on dairy cow productivity. Results: According to the findings, there is a significant and negative impact of herd size on milk productivity for China's dairy farms. By accurately monitoring and identifying the time of estrus, coupled with timely insemination, digital technology can mitigate the negative impact of herd size on milk productivity per cow. Discussion: To increase dairy cow productivity in China, the government should promote both small-scale dairy farming and focus on enhancing management capacities of farm operators, as well as large-scale dairy farms and increase the adoption of digital technologies.