Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Mutations in the riboflavin biosynthesis pathway confer resistance to furazolidone and abolish the synergistic interaction between furazolidone and vancomycin in Escherichia coli.
    (Microbiology Society, England, 2025-02-11) Wykes H; Le VVH; Rakonjac J
    The combined application of furazolidone and vancomycin has previously been shown to be synergistic against Gram-negative pathogens, with great therapeutic promise. However, the emergence and mechanism of resistance to this antibiotic combination have not been characterized. To fill this gap, we here selected Escherichia coli progeny for growth on the furazolidone-vancomycin combination at the concentration where the parent was sensitive. We show that selected clones were associated with increased resistance to neither, only one drug, or both furazolidone and vancomycin, but in all cases were associated with a decrease in the growth inhibition synergy. Using whole-genome sequencing, we identified various gene mutations in the resistant mutants. We further investigated the mechanism behind the most frequently arising mutations, those in the riboflavin biosynthesis genes ribB and ribE, that represent novel mutations causing furazolidone resistance and diminished vancomycin-furazolidone synergy. It was found that these ribB/ribE mutations act predominantly by decreasing the activity of the NfsA and NfsB nitroreductases. The emergence of the ribB/ribE mutations imposes a significant fitness cost on bacterial growth. Surprisingly, supplementing the medium with riboflavin, which compensates for the affected riboflavin biosynthesis pathway, could restore the normal growth of the ribB/ribE mutants while having no effects on the furazolidone resistance phenotype. Searching the ribB/ribE mutations in the public sequencing database detects the presence of the furazolidone-resistance-conferring ribE mutations (TKAG131-134 deletion or duplication) in clinical isolates from different countries. Hypotheses explaining why these ribE mutations were found in clinical isolates despite having poor fitness were further discussed.
  • Item
    When less is more: shortening the Lpp protein leads to increased vancomycin resistance in Escherichia coli.
    (Springer Nature Limited, 2023-12-01) Wykes H; Le VVH; Olivera C; Rakonjac J
    Vancomycin is a naturally occurring cell-wall-targeting glycopeptide antibiotic. Due to the low potency of this antibiotic against Gram-negative pathogens, such as Escherichia coli, there is a limited knowledge about interactions between vancomycin and this group of bacteria. Here, we show that an in-frame 63 bp deletion of the lpp gene caused a fourfold increase in vancomycin resistance in E. coli. The resulting protein, LppΔ21, is 21 amino acids shorter than the wild-type Lpp, a helical structural lipoprotein that controls the width of the periplasmic space through its length. The mutant remains susceptible to synergistic growth inhibition by combination of furazolidone and vancomycin; with furazolidone decreasing the vancomycin MIC by eightfold. These findings have clinical relevance, given that the vancomycin concentration required to select the lpp mutation is reachable during typical vancomycin oral administration for treating Clostridioides difficile infections. Combination therapy with furazolidone, however, is likely to prevent emergence and outgrowth of the lpp-mutated Gram-negative coliforms, avoiding exacerbation of the patient's condition during the treatment.
  • Item
    In vitro synergy between sodium deoxycholate and furazolidone against enterobacteria
    (BioMed Central Ltd, 2020-01-06) Le VVH; Olivera C; Spagnuolo J; Davies IG; Rakonjac J
    Background Antimicrobial combinations have been proven as a promising approach in the confrontation with multi-drug resistant bacterial pathogens. In the present study, we identify and characterize a synergistic interaction of broad-spectrum nitroreductase-activated prodrugs 5-nitrofurans, with a secondary bile salt, Sodium Deoxycholate (DOC) in growth inhibition and killing of enterobacteria. Results Using checkerboard assay, we show that combination of nitrofuran furazolidone (FZ) and DOC generates a profound synergistic effect on growth inhibition in several enterobacterial species including Escherichia coli, Salmonella enterica, Citrobacter gillenii and Klebsiella pneumoniae. The Fractional Inhibitory Concentration Index (FICI) for DOC-FZ synergy ranges from 0.125 to 0.35 that remains unchanged in an ampicillin-resistant E. coli strain containing a β-lactamase-producing plasmid. Findings from the time-kill assay further highlight the synergy with respect to bacterial killing in E. coli and Salmonella. We further characterize the mechanism of synergy in E. coli K12, showing that disruption of the tolC or acrA genes that encode components of multidrug efflux pumps causes, respectively, a complete or partial loss, of the DOC-FZ synergy. This finding indicates the key role of TolC-associated efflux pumps in the DOC-FZ synergy. Overexpression of Nitric Oxide-detoxifying enzyme Hmp results in a three-fold increase in FICI for DOC-FZ interaction, suggesting a role of nitric oxide in the synergy. We further demonstrate that DOC-FZ synergy is largely independent of NfsA and NfsB, the two major activation enzymes of the nitrofuran prodrugs. Conclusions This study is to our knowledge the first report of nitrofuran-deoxycholate synergy against Gram-negative bacteria, offering potential applications in antimicrobial therapeutics. The mechanism of DOC-FZ synergy involves FZ-mediated inhibition of TolC-associated efflux pumps that normally remove DOC from bacterial cells. One possible route contributing to that effect is via FZ-mediated nitric oxide production.