Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Novel rutin-casein composites as functional dry ingredients for the delivery of high concentration of rutin in dairy beverages: in vitro bioaccessibility, cytotoxicity, absorption, and intestinal barrier integrity(Elsevier Ltd, 2026-02-01) Ahmad R; Singh A; Purba A; Rashidinejad ARutin, a flavonoid with antioxidant and anti-inflammatory properties, has poor solubility (highly hydrophobic) and is unstable during gastrointestinal digestion, limiting its use in functional foods. To overcome this challenge, we developed two rutin-caseinate composites (RCC1 and RCC2) as delivery vehicles for incorporation into functional foods/beverages. While both systems deliver rutin at high concentration, they differ in terms of methodology, loading capacity, and applications. The gastrointestinal stability, bioaccessibility, and antioxidant potential of these delivery systems, both alone and incorporated into a functional dairy beverage (flavoured milk), were assessed. We also examined the cytotoxicity, absorption, and intestinal barrier integrity of rutin using an intestinal epithelial cell model. The bioaccessibility of rutin from RCC1 and RCC2 was found to be 63 % and 45 %, respectively, compared to untreated rutin (UR), which was undetectable due to precipitation. Additionally, RCC2 exhibited superior intestinal barrier integrity with a trans-epithelial electrical resistance (TEER) value of 1655 Ω/cm2 for 24 h, outperforming both RCC1 (1384 Ω/cm2) and UR (915 Ω/cm2). Intracellular antioxidant activity was significantly higher for both composites in terms of lower relative fluorescent units (RFU); 44 RFU for RCC1 and 42 RFU for RCC2, compared to 63 RFU for UR, demonstrating their enhanced protective effects. Caco-2 cell viability of the composite samples was higher, with no cytotoxicity observed compared to UR, confirming their safety. When incorporated into milk, both systems improved rutin bioaccessibility, with RCC1 showing a stronger antioxidant response (87 RFU) than RCC2 (100 RFU) and untreated rutin (140 RFU) during extended incubation. These findings suggest that both RCC1 and RCC2 are stable, soluble, and safe for physiological systems. Their incorporation into dairy matrices enhances rutin bioaccessibility and antioxidant potential, making them a promising approach for functional foods development.Item Potential benefits of Moringa peregrina defatted seed: Effect of processing on nutritional and anti-nutritional properties, antioxidant capacity, in vitro digestibility of protein and starch, and inhibition of α-glucosidase and α-amylase enzymes(Elsevier Ltd, 2022-10) Sardabi F; Azizi MH; Gavlighi HA; Rashidinejad AThis study aimed to eliminate the bitter taste of Moringa peregrina press cake (MPC) as a byproduct of oil extraction (by employing safe and conventional methods) and evaluating its potential for formulating value-added food products. The characteristics (nutritional and anti-nutritional properties, monosaccharide composition, in vitro starch and protein digestibility, antioxidant capacity, and in vitro α-glucosidase, and α-amylase inhibitory activity) of raw, debittered (soaked in distilled water and boiled), and roasted (after debitterization) MPC flours were determined. Debitterization significantly increased total protein, fiber, arabinose, xylose, antioxidant activity, in vitro protein digestibility, and α-amylase inhibitory activity, whereas it decreased total starch, resistant starch, starch digestibility, ash, glucose, phytic acid, tannin, and oxalate contents. Fiber content, protein digestibility, α-amylase inhibitory activity, and antioxidant activity were further increased as the result of roasting. MPC and its products could inhibit α-amylase activity, with the highest inhibition belonging to roasted debittered samples. The current study is the first to report on the comprehensive nutritional and bio- and physicochemical aspects of Moringa peregrina press cake and the effect of treatments on improving its sensorial, nutritional, and health-promoting properties. Therefore, these results indicate the potential of treated MPC as a novel natural functional ingredient for various food formulations.
