Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Changes to insulin sensitivity in glucose clearance systems and redox following dietary supplementation with a novel cysteine-rich protein: A pilot randomized controlled trial in humans with type-2 diabetes.
    (Elsevier B.V, 2023-10-07) Peeters WM; Gram M; Dias GJ; Vissers MCM; Hampton MB; Dickerhof N; Bekhit AE; Black MJ; Oxbøll J; Bayer S; Dickens M; Vitzel K; Sheard PW; Danielson KM; Hodges LD; Brønd JC; Bond J; Perry BG; Stoner L; Cornwall J; Rowlands DS
    We recently developed a novel keratin-derived protein (KDP) rich in cysteine, glycine, and arginine, with the potential to alter tissue redox status and insulin sensitivity. The KDP was tested in 35 human adults with type-2 diabetes mellitus (T2DM) in a 14-wk randomised controlled pilot trial comprising three 2×20 g supplemental protein/day arms: KDP-whey (KDPWHE), whey (WHEY), non-protein isocaloric control (CON), with standardised exercise. Outcomes were measured morning fasted and following insulin-stimulation (80 mU/m2/min hyperinsulinaemic-isoglycaemic clamp). With KDPWHE supplementation there was good and very-good evidence for moderate-sized increases in insulin-stimulated glucose clearance rate (GCR; 26%; 90% confidence limits, CL 2%, 49%) and skeletal-muscle microvascular blood flow (46%; 16%, 83%), respectively, and good evidence for increased insulin-stimulated sarcoplasmic GLUT4 translocation (18%; 0%, 39%) vs CON. In contrast, WHEY did not effect GCR (-2%; -25%, 21%) and attenuated HbA1c lowering (14%; 5%, 24%) vs CON. KDPWHE effects on basal glutathione in erythrocytes and skeletal muscle were unclear, but in muscle there was very-good evidence for large increases in oxidised peroxiredoxin isoform 2 (oxiPRX2) (19%; 2.2%, 35%) and good evidence for lower GPx1 concentrations (-40%; -4.3%, -63%) vs CON; insulin stimulation, however, attenuated the basal oxiPRX2 response (4%; -16%, 24%), and increased GPx1 (39%; -5%, 101%) and SOD1 (26%; -3%, 60%) protein expression. Effects of KDPWHE on oxiPRX3 and NRF2 content, phosphorylation of capillary eNOS and insulin-signalling proteins upstream of GLUT4 translocation AktSer437 and AS160Thr642 were inconclusive, but there was good evidence for increased IRSSer312 (41%; 3%, 95%), insulin-stimulated NFκB-DNA binding (46%; 3.4%, 105%), and basal PAK-1Thr423/2Thr402 phosphorylation (143%; 66%, 257%) vs WHEY. Our findings provide good evidence to suggest that dietary supplementation with a novel edible keratin protein in humans with T2DM may increase glucose clearance and modify skeletal-muscle tissue redox and insulin sensitivity within systems involving peroxiredoxins, antioxidant expression, and glucose uptake.
  • Item
    Oxidation of independent and combined ingested galactose and glucose during exercise.
    (American Physiological Society, 2022-10-06) Odell OJ; Impey SG; Shad BJ; Podlogar T; Salgueiro RB; Rowlands DS; Wallis GA
    Coingestion of glucose and galactose has been shown to enhance splanchnic extraction and metabolism of ingested galactose at rest; effects during exercise are unknown. This study examined whether combined ingestion of galactose and glucose during exercise enhances exogenous galactose oxidation. Fourteen endurance-trained male and female participants [age, 27 (5) yr; V̇o2peak, 58.1 (7.0) mL·kg−1·min−1] performed cycle ergometry for 150 min at 50% peak power on four occasions, in a randomized counterbalanced manner. During exercise, they ingested beverages providing carbohydrates at rates of 0.4 g.min−1 galactose (GAL), 0.8 g.min−1 glucose (GLU), and on two occasions 0.8 g.min−1 total galactose-glucose (GAL + GLU; 1:1 ratio). Single-monosaccharide 13C-labeling (*) was used to calculate independent (GAL, GLU, GAL* + GLU, and GAL + GLU*) and combined (GAL* + GLU*, COMBINE) exogenous-monosaccharide oxidation between exercise. Plasma galactose concentrations with GAL + GLU [0.4 mmol.L; 95% confidence limits (CL): 0.1, 0.6] were lower (contrast: 0.5 mmol.L; 95% CL: 0.2, 0.8; P < 0.0001) than when GAL alone (0.9 mmol.L; 95% CL: 0.7, 1.2) was ingested. Exogenous carbohydrate oxidation with GAL alone (0.31 g·min−1; 95% CL: 0.28, 0.35) was marginally reduced (contrast: 0.05 g·min−1; 95% CL: −0.09, 0.00007; P = 0.01) when combined with glucose (GAL* + GLU 0.27 g·min−1; 0.24, 0.30). Total combined exogenous-carbohydrate oxidation (COMBINE: 0.57 g·min−1; 95% CL: 0.49, 0.64) was similar (contrast: 0.02 g·min−1; 95% CL: −0.05, 0.09; P = 0.63) when compared with isoenergetic GLU (0.55 g·min−1; 95% CL: 0.52, 0.58). In conclusion, coingestion of glucose and galactose did not enhance exogenous galactose oxidation during exercise. When combined, isoenergetic galactose-glucose ingestion elicited similar exogenous-carbohydrate oxidation to glucose suggesting galactose-glucose blends are a valid alternative for glucose as an exogenous-carbohydrate source during exercise. NEW & NOTEWORTHY Glucose and galactose coingestion blunted the galactosemia seen with galactose-only ingestion during exercise. Glucose and galactose coingestion did not enhance the oxidation of ingested galactose during exercise. Combined galactose-glucose (1:1 ratio) ingestion was oxidized to a similar extent as isoenergetic glucose-only ingestion during exercise. Galactose-glucose blends are a viable exogenous carbohydrate energy source for ingestion during exercise.
  • Item
    Effects of Whey Protein on Skeletal Muscle Microvascular and Mitochondrial Plasticity Following 10-Weeks of Exercise Training in Men with Type-2 Diabetes
    (Canadian Science Publishing, 2021-08) Gaffney K; Lucero A; Macartney-Coxson D; Clapham J; Whitfield P; Palmer BR; Wakefield S; Faulkner J; Stoner L; Rowlands DS
    Abstract Skeletal muscle microvascular dysfunction and mitochondrial rarefaction feature in type 2 diabetes mellitus (T2DM) linked to low tissue glucose disposal rate (GDR). Exercise training and milk protein supplementation independently promote microvascular and metabolic plasticity in muscle associated with improved nutrient delivery, but combined effects are unknown. In a randomised-controlled trial, 24 men (55.6 y, SD 5.7) with T2DM ingested whey protein drinks (protein/carbohydrate/fat: 20/10/3 g; WHEY) or placebo (carbohydrate/fat: 30/3 g; CON) before/after 45 mixed-mode intense exercise sessions over 10 weeks, to study effects on insulin-stimulated (hyperinsulinemic clamp) skeletal-muscle microvascular blood flow (mBF) and perfusion (near-infrared spectroscopy), and histological, genetic, and biochemical markers (biopsy) of microvascular and mitochondrial plasticity. WHEY enhanced insulin-stimulated perfusion (WHEY-CON 5.6%; 90% CI −0.1, 11.3), while mBF was not altered (3.5%; −17.5, 24.5); perfusion, but not mBF, associated (regression) with increased GDR. Exercise training increased mitochondrial (range of means: 40%–90%) and lipid density (20%–30%), enzyme activity (20%–70%), capillary:fibre ratio (∼25%), and lowered systolic (∼4%) and diastolic (4%–5%) blood pressure, but without WHEY effects. WHEY dampened PGC1α −2.9% (90% compatibility interval: −5.7, −0.2) and NOS3 −6.4% (−1.4, −0.2) expression, but other messenger RNA (mRNA) were unclear. Skeletal muscle microvascular and mitochondrial exercise adaptations were not accentuated by whey protein ingestion in men with T2DM. ANZCTR Registration Number: ACTRN12614001197628. Novelty: • Chronic whey ingestion in T2DM with exercise altered expression of several mitochondrial and angiogenic mRNA. • Whey added no additional benefit to muscle microvascular or mitochondrial adaptations to exercise. • Insulin-stimulated perfusion increased with whey but was without impact on glucose disposal. Résumé Le dysfonctionnement microvasculaire du muscle squelettique et la raréfaction mitochondriale caractérisant le diabète de type 2 (« T2DM ») sont liés à un faible taux d’élimination du glucose tissulaire (« GDR »). L’entraînement physique et la supplémentation en protéines du lait favorisent indépendamment la plasticité microvasculaire et métabolique dans le muscle; cette plasticité est associée à une amélioration de l’apport de nutriments, mais les effets combinés sont inconnus. Dans un essai contrôlé randomisé, 24 hommes (55,6 ans, SD 5,7) aux prises avec le T2DM consomment des boissons protéinées de lactosérum (protéines / glucides / lipides: 20/10/3 g; « WHEY ») ou un placebo (glucides / lipides: 30/3 g; « CON ») avant / après 45 séances d’exercice intense en mode mixte sur 10 semaines, et ce, pour examiner les effets sur le flux sanguin microvasculaire (« mBF ») et la perfusion (spectroscopie proche infrarouge) stimulés par l’insuline (clamp hyperinsulinémique), des variables histologiques, génétiques et des marqueurs biochimiques (biopsie) de la plasticité microvasculaire et mitochondriale. WHEY améliore la perfusion stimulée par l’insuline (WHEY-CON 5,6 %; IC 90 % −0,1, 11,3), tandis que le mBF n’est pas modifié (3,5 %; −17,5, 24,5); la perfusion, mais pas le mBF, est associée (régression) à une augmentation du GDR. L’entraînement à l’exercice augmente la densité mitochondriale (gamme de moyennes: 40-90 %) et lipidique (20−30 %), l’activité enzymatique (20−70 %), le ratio capillaire: fibre (∼25 %) et diminue les pressions systolique (∼4 %) et diastolique (4−5 %), mais sans effets de WHEY. WHEY amortit l’expression de PGC1α −2,9 % (intervalle de compatibilité de 90 % : −5,7, −0,2) et NOS3 −6,4 % (−1,4, −0,2), mais les autres ARN messager (ARNm) ne sont pas clairs. Les adaptations microvasculaires et mitochondriales des muscles squelettiques causées par l’entraînement physique ne sont pas accentuées par la consommation de protéines de lactosérum chez les hommes aux prises avec le T2DM. Numéro d’enregistrement ANXCTR : ACTRN12614001197628. [Traduit par la Rédaction] Les nouveautés: • La consommation prolongée de lactosérum en présence de T2DM combinée à l’entraînement physique modifie l’expression de plusieurs ARNm mitochondriaux et angiogéniques. • Le lactosérum n’ajoute aucun avantage supplémentaire aux adaptations microvasculaires ou mitochondriales musculaires à l’exercice physique. • La perfusion stimulée par l’insuline augmente avec le lactosérum mais n’a pas d’impact sur l’élimination du glucose.