Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item Changes to insulin sensitivity in glucose clearance systems and redox following dietary supplementation with a novel cysteine-rich protein: A pilot randomized controlled trial in humans with type-2 diabetes.(Elsevier B.V, 2023-10-07) Peeters WM; Gram M; Dias GJ; Vissers MCM; Hampton MB; Dickerhof N; Bekhit AE; Black MJ; Oxbøll J; Bayer S; Dickens M; Vitzel K; Sheard PW; Danielson KM; Hodges LD; Brønd JC; Bond J; Perry BG; Stoner L; Cornwall J; Rowlands DSWe recently developed a novel keratin-derived protein (KDP) rich in cysteine, glycine, and arginine, with the potential to alter tissue redox status and insulin sensitivity. The KDP was tested in 35 human adults with type-2 diabetes mellitus (T2DM) in a 14-wk randomised controlled pilot trial comprising three 2×20 g supplemental protein/day arms: KDP-whey (KDPWHE), whey (WHEY), non-protein isocaloric control (CON), with standardised exercise. Outcomes were measured morning fasted and following insulin-stimulation (80 mU/m2/min hyperinsulinaemic-isoglycaemic clamp). With KDPWHE supplementation there was good and very-good evidence for moderate-sized increases in insulin-stimulated glucose clearance rate (GCR; 26%; 90% confidence limits, CL 2%, 49%) and skeletal-muscle microvascular blood flow (46%; 16%, 83%), respectively, and good evidence for increased insulin-stimulated sarcoplasmic GLUT4 translocation (18%; 0%, 39%) vs CON. In contrast, WHEY did not effect GCR (-2%; -25%, 21%) and attenuated HbA1c lowering (14%; 5%, 24%) vs CON. KDPWHE effects on basal glutathione in erythrocytes and skeletal muscle were unclear, but in muscle there was very-good evidence for large increases in oxidised peroxiredoxin isoform 2 (oxiPRX2) (19%; 2.2%, 35%) and good evidence for lower GPx1 concentrations (-40%; -4.3%, -63%) vs CON; insulin stimulation, however, attenuated the basal oxiPRX2 response (4%; -16%, 24%), and increased GPx1 (39%; -5%, 101%) and SOD1 (26%; -3%, 60%) protein expression. Effects of KDPWHE on oxiPRX3 and NRF2 content, phosphorylation of capillary eNOS and insulin-signalling proteins upstream of GLUT4 translocation AktSer437 and AS160Thr642 were inconclusive, but there was good evidence for increased IRSSer312 (41%; 3%, 95%), insulin-stimulated NFκB-DNA binding (46%; 3.4%, 105%), and basal PAK-1Thr423/2Thr402 phosphorylation (143%; 66%, 257%) vs WHEY. Our findings provide good evidence to suggest that dietary supplementation with a novel edible keratin protein in humans with T2DM may increase glucose clearance and modify skeletal-muscle tissue redox and insulin sensitivity within systems involving peroxiredoxins, antioxidant expression, and glucose uptake.Item A role for β-catenin in diet-induced skeletal muscle insulin resistance.(Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society, 2023-02-17) Masson SWC; Dissanayake WC; Broome SC; Hedges CP; Peeters WM; Gram M; Rowlands DS; Shepherd PR; Merry TLA central characteristic of insulin resistance is the impaired ability for insulin to stimulate glucose uptake into skeletal muscle. While insulin resistance can occur distal to the canonical insulin receptor-PI3k-Akt signaling pathway, the signaling intermediates involved in the dysfunction are yet to be fully elucidated. β-catenin is an emerging distal regulator of skeletal muscle and adipocyte insulin-stimulated GLUT4 trafficking. Here, we investigate its role in skeletal muscle insulin resistance. Short-term (5-week) high-fat diet (HFD) decreased skeletal muscle β-catenin protein expression 27% (p = 0.03), and perturbed insulin-stimulated β-cateninS552 phosphorylation 21% (p = 0.009) without affecting insulin-stimulated Akt phosphorylation relative to chow-fed controls. Under chow conditions, mice with muscle-specific β-catenin deletion had impaired insulin responsiveness, whereas under HFD, both mice exhibited similar levels of insulin resistance (interaction effect of genotype × diet p < 0.05). Treatment of L6-GLUT4-myc myocytes with palmitate lower β-catenin protein expression by 75% (p = 0.02), and attenuated insulin-stimulated β-catenin phosphorylationS552 and actin remodeling (interaction effect of insulin × palmitate p < 0.05). Finally, β-cateninS552 phosphorylation was 45% lower in muscle biopsies from men with type 2 diabetes while total β-catenin expression was unchanged. These findings suggest that β-catenin dysfunction is associated with the development of insulin resistance.Item Postexercise muscle glycogen synthesis with glucose, galactose, and combined galactose-glucose ingestion.(American Physiological Society, 2023-12-01) Podlogar T; Shad BJ; Seabright AP; Odell OJ; Lord SO; Civil R; Salgueiro RB; Shepherd EL; Lalor PF; Elhassan YS; Lai Y-C; Rowlands DS; Wallis GAIngested galactose can enhance postexercise liver glycogen repletion when combined with glucose but effects on muscle glycogen synthesis are unknown. In this double-blind randomized study participants [7 men and 2 women; V̇o2max: 51.1 (8.7) mL·kg-1·min-1] completed three trials of exhaustive cycling exercise followed by a 4-h recovery period, during which carbohydrates were ingested at the rate of 1.2 g·kg-1·h-1 comprising glucose (GLU), galactose (GAL) or galactose + glucose (GAL + GLU; 1:2 ratio). The increase in vastus lateralis skeletal-muscle glycogen concentration during recovery was higher with GLU relative to GAL + GLU [contrast: +50 mmol·(kg DM)-1; 95%CL 10, 89; P = 0.021] and GAL [+46 mmol·(kg DM)-1; 95%CL 8, 84; P = 0.024] with no difference between GAL + GLU and GAL [-3 mmol·(kg DM)-1; 95%CL -44, 37; P = 0.843]. Plasma glucose concentration in GLU was not significantly different vs. GAL + GLU (+ 0.41 mmol·L-1; 95%CL 0.13, 0.94) but was significantly lower than GAL (-0.75 mmol·L-1; 95%CL -1.34, -0.17) and also lower in GAL vs. GAL + GLU (-1.16 mmol·-1; 95%CL -1.80, -0.53). Plasma insulin was higher in GLU + GAL and GLU compared with GAL but not different between GLU + GAL and GLU. Plasma galactose concentration was higher in GAL compared with GLU (3.35 mmol·L-1; 95%CL 3.07, 3.63) and GAL + GLU (3.22 mmol·L-1; 95%CL 3.54, 2.90) with no difference between GLU + GAL (0.13 mmol·L-1; 95%CL -0.11, 0.37) and GLU. Compared with galactose or a galactose + glucose blend, glucose feeding was more effective in postexercise muscle glycogen synthesis. Comparable muscle glycogen synthesis was observed with galactose-glucose coingestion and exclusive galactose-only ingestion. NEW & NOTEWORTHY Postexercise galactose-glucose coingestion or exclusive galactose-only ingestion resulted in a lower rate of skeletal-muscle glycogen replenishment compared with exclusive glucose-only ingestion. Comparable muscle glycogen synthesis was observed with galactose-glucose coingestion and exclusive galactose-only ingestion.Item Effects of Whey Protein on Skeletal Muscle Microvascular and Mitochondrial Plasticity Following 10-Weeks of Exercise Training in Men with Type-2 Diabetes(Canadian Science Publishing, 2021-08) Gaffney K; Lucero A; Macartney-Coxson D; Clapham J; Whitfield P; Palmer BR; Wakefield S; Faulkner J; Stoner L; Rowlands DSAbstract Skeletal muscle microvascular dysfunction and mitochondrial rarefaction feature in type 2 diabetes mellitus (T2DM) linked to low tissue glucose disposal rate (GDR). Exercise training and milk protein supplementation independently promote microvascular and metabolic plasticity in muscle associated with improved nutrient delivery, but combined effects are unknown. In a randomised-controlled trial, 24 men (55.6 y, SD 5.7) with T2DM ingested whey protein drinks (protein/carbohydrate/fat: 20/10/3 g; WHEY) or placebo (carbohydrate/fat: 30/3 g; CON) before/after 45 mixed-mode intense exercise sessions over 10 weeks, to study effects on insulin-stimulated (hyperinsulinemic clamp) skeletal-muscle microvascular blood flow (mBF) and perfusion (near-infrared spectroscopy), and histological, genetic, and biochemical markers (biopsy) of microvascular and mitochondrial plasticity. WHEY enhanced insulin-stimulated perfusion (WHEY-CON 5.6%; 90% CI −0.1, 11.3), while mBF was not altered (3.5%; −17.5, 24.5); perfusion, but not mBF, associated (regression) with increased GDR. Exercise training increased mitochondrial (range of means: 40%–90%) and lipid density (20%–30%), enzyme activity (20%–70%), capillary:fibre ratio (∼25%), and lowered systolic (∼4%) and diastolic (4%–5%) blood pressure, but without WHEY effects. WHEY dampened PGC1α −2.9% (90% compatibility interval: −5.7, −0.2) and NOS3 −6.4% (−1.4, −0.2) expression, but other messenger RNA (mRNA) were unclear. Skeletal muscle microvascular and mitochondrial exercise adaptations were not accentuated by whey protein ingestion in men with T2DM. ANZCTR Registration Number: ACTRN12614001197628. Novelty: • Chronic whey ingestion in T2DM with exercise altered expression of several mitochondrial and angiogenic mRNA. • Whey added no additional benefit to muscle microvascular or mitochondrial adaptations to exercise. • Insulin-stimulated perfusion increased with whey but was without impact on glucose disposal. Résumé Le dysfonctionnement microvasculaire du muscle squelettique et la raréfaction mitochondriale caractérisant le diabète de type 2 (« T2DM ») sont liés à un faible taux d’élimination du glucose tissulaire (« GDR »). L’entraînement physique et la supplémentation en protéines du lait favorisent indépendamment la plasticité microvasculaire et métabolique dans le muscle; cette plasticité est associée à une amélioration de l’apport de nutriments, mais les effets combinés sont inconnus. Dans un essai contrôlé randomisé, 24 hommes (55,6 ans, SD 5,7) aux prises avec le T2DM consomment des boissons protéinées de lactosérum (protéines / glucides / lipides: 20/10/3 g; « WHEY ») ou un placebo (glucides / lipides: 30/3 g; « CON ») avant / après 45 séances d’exercice intense en mode mixte sur 10 semaines, et ce, pour examiner les effets sur le flux sanguin microvasculaire (« mBF ») et la perfusion (spectroscopie proche infrarouge) stimulés par l’insuline (clamp hyperinsulinémique), des variables histologiques, génétiques et des marqueurs biochimiques (biopsie) de la plasticité microvasculaire et mitochondriale. WHEY améliore la perfusion stimulée par l’insuline (WHEY-CON 5,6 %; IC 90 % −0,1, 11,3), tandis que le mBF n’est pas modifié (3,5 %; −17,5, 24,5); la perfusion, mais pas le mBF, est associée (régression) à une augmentation du GDR. L’entraînement à l’exercice augmente la densité mitochondriale (gamme de moyennes: 40-90 %) et lipidique (20−30 %), l’activité enzymatique (20−70 %), le ratio capillaire: fibre (∼25 %) et diminue les pressions systolique (∼4 %) et diastolique (4−5 %), mais sans effets de WHEY. WHEY amortit l’expression de PGC1α −2,9 % (intervalle de compatibilité de 90 % : −5,7, −0,2) et NOS3 −6,4 % (−1,4, −0,2), mais les autres ARN messager (ARNm) ne sont pas clairs. Les adaptations microvasculaires et mitochondriales des muscles squelettiques causées par l’entraînement physique ne sont pas accentuées par la consommation de protéines de lactosérum chez les hommes aux prises avec le T2DM. Numéro d’enregistrement ANXCTR : ACTRN12614001197628. [Traduit par la Rédaction] Les nouveautés: • La consommation prolongée de lactosérum en présence de T2DM combinée à l’entraînement physique modifie l’expression de plusieurs ARNm mitochondriaux et angiogéniques. • Le lactosérum n’ajoute aucun avantage supplémentaire aux adaptations microvasculaires ou mitochondriales musculaires à l’exercice physique. • La perfusion stimulée par l’insuline augmente avec le lactosérum mais n’a pas d’impact sur l’élimination du glucose.
