Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Changes to insulin sensitivity in glucose clearance systems and redox following dietary supplementation with a novel cysteine-rich protein: A pilot randomized controlled trial in humans with type-2 diabetes.(Elsevier B.V, 2023-10-07) Peeters WM; Gram M; Dias GJ; Vissers MCM; Hampton MB; Dickerhof N; Bekhit AE; Black MJ; Oxbøll J; Bayer S; Dickens M; Vitzel K; Sheard PW; Danielson KM; Hodges LD; Brønd JC; Bond J; Perry BG; Stoner L; Cornwall J; Rowlands DSWe recently developed a novel keratin-derived protein (KDP) rich in cysteine, glycine, and arginine, with the potential to alter tissue redox status and insulin sensitivity. The KDP was tested in 35 human adults with type-2 diabetes mellitus (T2DM) in a 14-wk randomised controlled pilot trial comprising three 2×20 g supplemental protein/day arms: KDP-whey (KDPWHE), whey (WHEY), non-protein isocaloric control (CON), with standardised exercise. Outcomes were measured morning fasted and following insulin-stimulation (80 mU/m2/min hyperinsulinaemic-isoglycaemic clamp). With KDPWHE supplementation there was good and very-good evidence for moderate-sized increases in insulin-stimulated glucose clearance rate (GCR; 26%; 90% confidence limits, CL 2%, 49%) and skeletal-muscle microvascular blood flow (46%; 16%, 83%), respectively, and good evidence for increased insulin-stimulated sarcoplasmic GLUT4 translocation (18%; 0%, 39%) vs CON. In contrast, WHEY did not effect GCR (-2%; -25%, 21%) and attenuated HbA1c lowering (14%; 5%, 24%) vs CON. KDPWHE effects on basal glutathione in erythrocytes and skeletal muscle were unclear, but in muscle there was very-good evidence for large increases in oxidised peroxiredoxin isoform 2 (oxiPRX2) (19%; 2.2%, 35%) and good evidence for lower GPx1 concentrations (-40%; -4.3%, -63%) vs CON; insulin stimulation, however, attenuated the basal oxiPRX2 response (4%; -16%, 24%), and increased GPx1 (39%; -5%, 101%) and SOD1 (26%; -3%, 60%) protein expression. Effects of KDPWHE on oxiPRX3 and NRF2 content, phosphorylation of capillary eNOS and insulin-signalling proteins upstream of GLUT4 translocation AktSer437 and AS160Thr642 were inconclusive, but there was good evidence for increased IRSSer312 (41%; 3%, 95%), insulin-stimulated NFκB-DNA binding (46%; 3.4%, 105%), and basal PAK-1Thr423/2Thr402 phosphorylation (143%; 66%, 257%) vs WHEY. Our findings provide good evidence to suggest that dietary supplementation with a novel edible keratin protein in humans with T2DM may increase glucose clearance and modify skeletal-muscle tissue redox and insulin sensitivity within systems involving peroxiredoxins, antioxidant expression, and glucose uptake.Item Oxidation of independent and combined ingested galactose and glucose during exercise.(American Physiological Society, 2022-10-06) Odell OJ; Impey SG; Shad BJ; Podlogar T; Salgueiro RB; Rowlands DS; Wallis GACoingestion of glucose and galactose has been shown to enhance splanchnic extraction and metabolism of ingested galactose at rest; effects during exercise are unknown. This study examined whether combined ingestion of galactose and glucose during exercise enhances exogenous galactose oxidation. Fourteen endurance-trained male and female participants [age, 27 (5) yr; V̇o2peak, 58.1 (7.0) mL·kg−1·min−1] performed cycle ergometry for 150 min at 50% peak power on four occasions, in a randomized counterbalanced manner. During exercise, they ingested beverages providing carbohydrates at rates of 0.4 g.min−1 galactose (GAL), 0.8 g.min−1 glucose (GLU), and on two occasions 0.8 g.min−1 total galactose-glucose (GAL + GLU; 1:1 ratio). Single-monosaccharide 13C-labeling (*) was used to calculate independent (GAL, GLU, GAL* + GLU, and GAL + GLU*) and combined (GAL* + GLU*, COMBINE) exogenous-monosaccharide oxidation between exercise. Plasma galactose concentrations with GAL + GLU [0.4 mmol.L; 95% confidence limits (CL): 0.1, 0.6] were lower (contrast: 0.5 mmol.L; 95% CL: 0.2, 0.8; P < 0.0001) than when GAL alone (0.9 mmol.L; 95% CL: 0.7, 1.2) was ingested. Exogenous carbohydrate oxidation with GAL alone (0.31 g·min−1; 95% CL: 0.28, 0.35) was marginally reduced (contrast: 0.05 g·min−1; 95% CL: −0.09, 0.00007; P = 0.01) when combined with glucose (GAL* + GLU 0.27 g·min−1; 0.24, 0.30). Total combined exogenous-carbohydrate oxidation (COMBINE: 0.57 g·min−1; 95% CL: 0.49, 0.64) was similar (contrast: 0.02 g·min−1; 95% CL: −0.05, 0.09; P = 0.63) when compared with isoenergetic GLU (0.55 g·min−1; 95% CL: 0.52, 0.58). In conclusion, coingestion of glucose and galactose did not enhance exogenous galactose oxidation during exercise. When combined, isoenergetic galactose-glucose ingestion elicited similar exogenous-carbohydrate oxidation to glucose suggesting galactose-glucose blends are a valid alternative for glucose as an exogenous-carbohydrate source during exercise. NEW & NOTEWORTHY Glucose and galactose coingestion blunted the galactosemia seen with galactose-only ingestion during exercise. Glucose and galactose coingestion did not enhance the oxidation of ingested galactose during exercise. Combined galactose-glucose (1:1 ratio) ingestion was oxidized to a similar extent as isoenergetic glucose-only ingestion during exercise. Galactose-glucose blends are a viable exogenous carbohydrate energy source for ingestion during exercise.
