Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Artificial Intelligence-Enabled DDoS Detection for Blockchain-Based Smart Transport Systems.(MDPI (Basel, Switzerland), 2021-12-22) Liu T; Sabrina F; Jang-Jaccard J; Xu W; Wei YA smart public transport system is expected to be an integral part of our human lives to improve our mobility and reduce the effect of our carbon footprint. The safety and ongoing maintenance of the smart public transport system from cyberattacks are vitally important. To provide more comprehensive protection against potential cyberattacks, we propose a novel approach that combines blockchain technology and a deep learning method that can better protect the smart public transport system. By the creation of signed and verified blockchain blocks and chaining of hashed blocks, the blockchain in our proposal can withstand unauthorized integrity attack that tries to forge sensitive transport maintenance data and transactions associated with it. A hybrid deep learning-based method, which combines autoencoder (AE) and multi-layer perceptron (MLP), in our proposal can effectively detect distributed denial of service (DDoS) attempts that can halt or block the urgent and critical exchange of transport maintenance data across the stakeholders. The experimental results of the hybrid deep learning evaluated on three different datasets (i.e., CICDDoS2019, CIC-IDS2017, and BoT-IoT) show that our deep learning model is effective to detect a wide range of DDoS attacks achieving more than 95% F1-score across all three datasets in average. The comparison of our approach with other similar methods confirms that our approach covers a more comprehensive range of security properties for the smart public transport system.Item Entitlement-Based Access Control for Smart Cities Using Blockchain(MDPI (Basel, Switzerland), 2021-08-04) Sabrina F; Jang-Jaccard J; Dai H-N; Wu J; Wang HSmart cities use the Internet of Things (IoT) devices such as connected sensors, lights, and meters to collect and analyze data to improve infrastructure, public utilities, and services. However, the true potential of smart cities cannot be leveraged without addressing many security concerns. In particular, there is a significant challenge for provisioning a reliable access control solution to share IoT data among various users across organizations. We present a novel entitlement-based blockchain-enabled access control architecture that can be used for smart cities (and for any ap-plication domains that require large-scale IoT deployments). Our proposed entitlement-based access control model is flexible as it facilitates a resource owner to safely delegate access rights to any entities beyond the trust boundary of an organization. The detailed design and implementation on Ethereum blockchain along with a qualitative evaluation of the security and access control aspects of the proposed scheme are presented in the paper. The experimental results from private Ethereum test networks demonstrate that our proposal can be easily implemented with low latency. This validates that our proposal is applicable to use in the real world IoT environments.
