Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item Multi-Locus Next-Generation Sequence Typing of DNA Extracted From Pooled Colonies Detects Multiple Unrelated Candida albicans Strains in a Significant Proportion of Patient Samples.(Frontiers Media S.A., 2018-06-05) Zhang N; Wheeler D; Truglio M; Lazzarini C; Upritchard J; McKinney W; Rogers K; Prigitano A; Tortorano AM; Cannon RD; Broadbent RS; Roberts S; Schmid J; Sanglard DThe yeast Candida albicans is an important opportunistic human pathogen. For C. albicans strain typing or drug susceptibility testing, a single colony recovered from a patient sample is normally used. This is insufficient when multiple strains are present at the site sampled. How often this is the case is unclear. Previous studies, confined to oral, vaginal and vulvar samples, have yielded conflicting results and have assessed too small a number of colonies per sample to reliably detect the presence of multiple strains. We developed a next-generation sequencing (NGS) modification of the highly discriminatory C. albicans MLST (multilocus sequence typing) method, 100+1 NGS-MLST, for detection and typing of multiple strains in clinical samples. In 100+1 NGS-MLST, DNA is extracted from a pool of colonies from a patient sample and also from one of the colonies. MLST amplicons from both DNA preparations are analyzed by high-throughput sequencing. Using base call frequencies, our bespoke DALMATIONS software determines the MLST type of the single colony. If base call frequency differences between pool and single colony indicate the presence of an additional strain, the differences are used to computationally infer the second MLST type without the need for MLST of additional individual colonies. In mixes of previously typed pairs of strains, 100+1 NGS-MLST reliably detected a second strain. Inferred MLST types of second strains were always more similar to their real MLST types than to those of any of 59 other isolates (22 of 31 inferred types were identical to the real type). Using 100+1 NGS-MLST we found that 7/60 human samples, including three superficial candidiasis samples, contained two unrelated strains. In addition, at least one sample contained two highly similar variants of the same strain. The probability of samples containing unrelated strains appears to differ considerably between body sites. Our findings indicate the need for wider surveys to determine if, for some types of samples, routine testing for the presence of multiple strains is warranted. 100+1 NGS-MLST is effective for this purpose.Item Methylome changes in Lolium perenne associated with long-term colonisation by the endophytic fungus Epichloë sp. LpTG-3 strain AR37.(Frontiers Media S.A., 2023-11-13) Forte FP; Malinowska M; Nagy I; Schmid J; Dijkwel P; Hume DE; Johnson RD; Simpson WR; Asp T; Morillas JIVEpichloë spp. often form mutualistic interactions with cool-season grasses, such as Lolium perenne. However, the molecular mechanisms underlying this interaction remain poorly understood. In this study, we employed reduced representation bisulfite sequencing method (epiGBS) to investigate the impact of the Epichloë sp. LpTG-3 strain AR37 on the methylome of L. perenne across multiple grass generations and under drought stress conditions. Our results showed that the presence of the endophyte leads to a decrease in DNA methylation across genomic features, with differentially methylated regions primarily located in intergenic regions and CHH contexts. The presence of the endophyte was consistently associated with hypomethylation in plants across generations. This research sheds new light on the molecular mechanisms governing the mutualistic interaction between Epichloë sp. LpTG-3 strain AR37 and L. perenne. It underscores the role of methylation changes associated with endophyte infection and suggests that the observed global DNA hypomethylation in L. perenne may be influenced by factors such as the duration of the endophyte-plant association and the accumulation of genetic and epigenetic changes over time.Item Corrigendum: Methylome changes in Lolium perenne associated with long-term colonisation by the endophytic fungus Epichloë sp. LpTG-3 strain AR37.(Frontiers Media S.A., 2023-11-13) Forte FP; Malinowska M; Nagy I; Schmid J; Dijkwel P; Hume DE; Johnson RD; Simpson WR; Asp T[This corrects the article DOI: 10.3389/fpls.2023.1258100.]. This article is a correction to: Methylome changes in Lolium perenne associated with long-term colonisation by the endophytic fungus Epichloë sp. LpTG-3 strain AR37Item Impact of genetic background on allele selection in a highly mutable Candida albicans gene, PNG2(PLoS ONE, 2010) Zhang N; Cannon RD; Holland BR; Patchett ML; Schmid JIn many microbes rapid mutation of highly mutable contingency genes continually replenishes a pool of variant alleles from which the most suitable are selected, assisting in rapid adaptation and evasion of the immune response. In some contingency genes mutability is achieved through DNA repeats within the coding region. The fungal human pathogen Candida albicans has 2600 repeat-containing ORFs. For those investigated (ALS genes, HYR1, HYR2, CEK1, RLM1) many protein variants with differing amino acid repeat regions exist, as expected for contingency genes. However, specific alleles dominate in different clades, which is unexpected if allele variation is used for short-term adaptation. Generation of new alleles of repeat-containing C. albicans ORFs has never been observed directly. Here we present evidence for restrictions on the emergence of new alleles in a highly mutable C. albicans repeat-containing ORF, PNG2, encoding a putative secreted or cell surface glycoamidase. In laboratory cultures new PNG2 alleles arose at a rate of 2.8x10(-5) (confidence interval 3.3x10(-6)-9. 9x10(-5)) per cell per division, comparable to rates measured for contingency genes. Among 80 clinical isolates 17 alleles of different length and 23 allele combinations were distinguishable; sequence differences between repeat regions of identical size suggest the existence of 36 protein variants. Specific allele combinations predominated in different genetic backgrounds, as defined by DNA fingerprinting and multilocus sequence typing. Given the PNG2 mutation rate, this is unexpected, unless in different genetic backgrounds selection favors different alleles. Specific alleles or allele combinations were not preferentially associated with C. albicans isolates from particular body sites or geographical regions. Our results suggest that the mutability of PNG2 is not used for short-term adaptation or evasion of the immune system. Nevertheless the large number of alleles observed indicates that mutability of PNG2 may assist C. albicans strains from different genetic backgrounds optimize their interaction with the host in the long term.
