Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Growth, carcass and meat quality characteristics of Charolais-sired steers and heifers born to Angus-cross-dairy and Angus breeding cows(Elsevier Ltd, 2023-07) Coleman LW; Schreurs NM; Kenyon PR; Morris ST; Hickson RECharolais-sired heifers and steers from Angus, Angus × Holstein-Friesian, Angus × Holstein-Friesian-Jersey and Angus × Jersey cows were measured for growth, carcass, and meat quality characteristics. Despite differences in weaning weight and growth rate, the progeny of different breed-crosses did not differ in final live weight or carcass weight (P > 0.05). Carcass and meat quality characteristics did not differ among breed-crosses (P > 0.05), except for fat that was more yellow in progeny from Angus and Angus-cross-Jersey dams. Steers were slaughtered older and had heavier carcasses with greater fat depth and intramuscular fat than heifers. Meat quality differed between the sex classes, with steers having greater pH and shear force, redder meat, and yellower fat than heifers. Angus-cross-dairy cows when crossed with a beef breed sire such as the Charolais will provide progeny for meat production which are competitive to beef breeds for beef finishing and meat production and therefore, a useful mechanism to utilize surplus animals from the dairy industry.Item Genetic Association of PPARGC1A Gene Single Nucleotide Polymorphism with Milk Production Traits in Italian Mediterranean Buffalo.(Hindawi Limited, 2021-03-20) Hosseini SM; Tingzhu Y; Pasandideh M; Liang A; Hua G; Farmanullah; Schreurs NM; Raza SHA; Salzano A; Campanile G; Gasparrini B; Yang L; Kontos CKPPARGC1A gene plays an important role in the activation of various important hormone receptors and transcriptional factors involved in the regulation of adaptive thermogenesis, gluconeogenesis, fiber-type switching in skeletal muscle, mitochondrial biogenesis, and adipogenesis, regulating the reproduction and proposed as a candidate gene for milk-related traits in cattle. This study identified polymorphisms in the PPARGC1A gene in Italian Mediterranean buffaloes and their associations to milk production and quality traits (lactation length, peak milk yield, fat and protein yield, and percentage). As a result, a total of seven SNPs (g.-78A>G, g.224651G>C, g.286986G>A, g.304050G>A, g.325647G>A, g.325817T>C, and g.325997G>A) were identified by DNA pooled sequencing. Analysis of productivity traits within the genotyped animals revealed that the g.286986G>A located at intron 4 was associated with milk production traits, but the g.325817T>C had no association with milk production. Polymorphisms in g.-78A>G was associated with peak milk yield and milk yield, while g.304050G>A and g.325997 G>A were associated with both milk yield and protein percentage. Our findings suggest that polymorphisms in the buffalo PPARGC1A gene are associated with milk production traits and can be used as a candidate gene for milk traits and marker-assisted selection in the buffalo breeding program.
