Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Identifying Critical Criteria on Assessment of Sustainable Materials for Construction Projects in New Zealand Through the Analytic Hierarchy Process (AHP) Approach(MDPI (Basel, Switzerland), 2024-11-30) Qian J; Siriwardana C; Shahzad W; Rasekh H; Armaghani DJ; Mortazavi MNew Zealand’s goal of achieving net-zero greenhouse gas emissions (GHG) by 2050 highlights the urgent need for integrating sustainable practices into the construction industry. Since the construction industry makes a major contribution to GHG emissions, this study aims to address this need by identifying and prioritizing the critical criteria relevant to the effective selection of sustainable construction materials for New Zealand’s construction industry. The research employs a multi-stage approach, including a comprehensive literature review, expert interviews, and industry surveys. Initially, 80 criteria were identified through the literature review. Subsequently, expert interviews and industry surveys led to the identification of 30 critical criteria, which were categorized into environmental, technical, economic, and social impacts, and were ranked based on their importance. This study utilizes a 5-point importance index and Analytic Hierarchy Process (AHP) to rank these criteria. This study notably integrates technical impacts with the three traditional sustainability pillars—environmental, economic, and social—providing a nuanced evaluation of construction material selection. The results indicate that environmental and technical criteria received the highest priority weights (32% each), followed by economic (19%) and social impacts (17%). The findings offer valuable insights for industry stakeholders, assisting them in applying these critical criteria to improve material selection practices in alignment with New Zealand’s sustainability objectives.Item A Social Assessment Framework to Derive a Social Score for Green Material Selection: A Case Study from the Sri Lankan Cement Industry(MDPI (Basel, Switzerland), 2024-08-02) Fernando A; Siriwardana C; Gunasekara C; Law DW; Zhang G; Gamage JCPH; Caggiano AAssessing the sustainability of material-based products now encompasses social sustainability, a vital aspect often overlooked. Even though the existing frameworks provide a starting point, they do not often differentiate between the assessment criteria when making comparisons within one specific material category, which has made sustainability assessments more focused on environmental and economic aspects. This study addresses this critical gap by pioneering a social assessment framework curated to help practitioners to choose the most sustainable cement type out of the standard cement types used in the industry. Utilizing the Fuzzy Analytic Hierarchy Process (FAHP) and linear-scoring method, criteria weights were systematically assigned based on scoring by industry and academic experts. The findings highlight the importance of integrating social sustainability with environmental and economic factors in cement selection. Unlike traditional material selection, which primarily considers cost and performance, green material selection emphasizes the holistic impact of materials, including social factors. Variations in weightage decisions among experts highlight the influence of practical experience, research interests, and context. Functionality emerges as a crucial criterion. The ranking of cement types based on social scores places CEM II/B-M at the top, followed by CEM IV/A, CEM II/A-S, CEM II/A-V, CEM I, and CEM II/A-LL. The evolving nature of sustainability necessitates ongoing research to refine and expand existing frameworks for a more sustainable construction industry.
