Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item Nutrient-adequate diets with the lowest greenhouse gas emissions or price are the least acceptable—insights from dietary optimisation modelling using the iOTA model®(Frontiers Media S.A., 2025-08-01) Tavan M; Smith NW; Fletcher AJ; Hill JP; McNabb WC; Das AOver the past decade, there has been an increasing interest in the environmental sustainability of diets because food systems are responsible for a third of the anthropogenic greenhouse gas emissions (GHGE). However, less attention has been paid to the nutrient adequacy, consumer acceptability, and affordability of such diets. Such knowledge is particularly scarce in New Zealand, where approximately 40% of adults and 20% of children may live under severe to moderate food insecurity. The iOTA Model® is a country-specific dietary optimisation tool designed to fill this gap by bringing the various aspects of diet sustainability together and providing evidence-based knowledge on not just the environmental impact of food but also its economic and nutritional sustainability. The iOTA Model® was constructed using mixed integer linear programming by integrating New Zealand-specific dietary data. Features such as digestibility and bioavailability considerations have been incorporated as part of the iOTA Model®, allowing for a more accurate estimation of nutrient supply. The model is available as an open-access tool and allows users to explore various dimensions of a sustainable diet. Eight optimisation scenarios, along with baseline diets, were investigated for adult males and females in New Zealand. Results showed that reducing dietary GHGE or price by approximately 80% was possible while meeting nutrient adequacy requirements. However, such diets deviated substantially from the baseline eating patterns, indicating lower consumer acceptability, and only included a limited variety of foods. On the contrary, diets with minimum deviation from baseline remained realistic while adhering to nutrient targets and reducing GHGE by 10 and 30% in female and male consumers aged 19–30 years, respectively, and weekly price remained below the baseline. Expansion of the model to additional countries and its open-access nature will allow independent dietary sustainability research through optimisation.Item Reassessing the sustainability promise of cultured meat: a critical review with new data perspectives(Taylor and Francis Group, 2025-02-21) Tavan M; Smith NW; McNabb WC; Wood PThere are currently over 170 companies in the field of cultured meat (CM) which have attracted over US$3 Billion in investments since 2019. The CM industry owes much of this success to the many claims around environmental benefits and alleviating animal welfare concerns, while being equally nutritious and as acceptable as conventional meat. This review aims to provide a much needed discussion on the latest research findings concerning the nutritional and environmental sustainability of CM and provide an evidence-based discussion around some of the challenges that the industry faces today. Recent developments in the field have revealed that some of the sustainability claims of the CM industry are overly ambitious and not supported by evidence. Environmental assessments have revealed that CM production is highly energy intensive and its environmental footprint can only be improved if renewable energy sources are used. In terms of nutritional quality of CM, there are many unknowns and gaps in the knowledge that require investigation.Item The role of meat in the human diet: evolutionary aspects and nutritional value(Oxford University Press on behalf of the American Society of Animal Science, 2023-04-15) Leroy F; Smith NW; Adesogan AT; Beal T; Iannotti L; Moughan PJ; Mann NImplications Aspects of human anatomy, digestion, and metabolism diverged from other primates, indicating evolutionary reliance on, and compatibility with, substantial meat intake. Implications of a disconnect from evolutionary dietary patterns may contribute to today’s burden of disease, increasing the risk for both nutrient deficiencies and chronic diseases. Meat supplies high-quality protein and various nutrients, some of which are not always easily obtained with meat-free diets and are often already suboptimal or deficient in global populations. Removal of meat comes with implications for a broad spectrum of nutrients that need to be accounted for, whereas compensatory dietary strategies must factor in physiological and practical constraints. Although meat makes up a small part (<10%) of global food mass and energy, it delivers most of the global vitamin B12 intake and plays a substantial role in the supply of other B vitamins, retinol, long-chain omega-3 fatty acids, several minerals in bioavailable forms (e.g., iron and zinc), and a variety of bioactive compounds with health-improving potential (e.g., taurine, creatine, and carnosine). As a food matrix, meat is more than the sum of its individual nutrients. Moreover, within the diet matrix, it can serve as a keystone food in food-based dietary interventions to improve nutritional status, especially in regions that rely heavily on cereal staples. Efforts to lower global meat intake for environmental or other reasons beyond a critical threshold may hinder progress towards reducing undernutrition and the effects this has on both physical and cognitive outcomes, and thereby stifle economic development. This is particularly a concern for populations with increased needs and in regions where current meat intake levels are low, which is not only pertinent for the Global South but also of relevance in high-income countries.
