Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Seasonal variation in soil and herbage CO2 efflux for a sheep-grazed alpine meadow on the north-east Qinghai-Tibetan Plateau and estimated net annual CO2 exchange
    (2/06/2022) Yuan H; Matthew C; He XZ; Sun Y; Liu Y; Zhang T; Gao X; Yan C; Chang S; Hou F
    The Qinghai-Tibetan Plateau is a vast geographic area currently subject to climate warming. Improved knowledge of the CO2 respiration dynamics of the Plateau alpine meadows and of the impact of grazing on CO2 fluxes is highly desirable. Such information will assist land use planning. We measured soil and vegetation CO2 efflux of alpine meadows using a closed chamber technique over diurnal cycles in winter, spring and summer. The annual, combined soil and plant respiration on ungrazed plots was 28.0 t CO2 ha-1 a-1, of which 3.7 t ha-1 a-1occurred in winter, when plant respiration was undetectable. This suggests winter respiration was driven mainly by microbial oxidation of soil organic matter. The winter respiration observed in this study was sufficient to offset the growing season CO2 sink reported for similar alpine meadows in other studies. Grazing increased herbage respiration in summer, presumably through stimulation of gross photosynthesis. From limited herbage production data, we estimate the sustainable yield of these meadows for grazing purposes to be about 500 kg herbage dry matter ha-1 a-1. Addition of photosynthesis data and understanding of factors affecting soil carbon sequestration to more precisely determine the CO2 balance of these grasslands is recommended.
  • Item
    An improved method for monitoring multiscale plant species diversity of alpine grassland using UAVs: A case study in the source region of the Yellow River, China
    (Frontiers Media, 9/06/2022) Sun Y; Yuan Y; Luo Y; Ji W; Bian Q; Zhu Z; Wang J; Qin Y; He XZ; Li M; Yi S
    Plant species diversity (PSD) is essential in evaluating the function and developing the management and conservation strategies of grassland. However, over a large region, an efficient and high precision method to monitor multiscale PSD (α-, β-, and γ-diversity) is lacking. In this study, we proposed and improved an unmanned aerial vehicle (UAV)-based PSD monitoring method (UAVB) and tested the feasibility, and meanwhile, explored the potential relationship between multiscale PSD and precipitation on the alpine grassland of the source region of the Yellow River (SRYR), China. Our findings showed that: (1) UAVB was more representative (larger monitoring areas and more species identified with higher α- and γ-diversity) than the traditional ground-based monitoring method, though a few specific species (small in size) were difficult to identify; (2) UAVB is suitable for monitoring the multiscale PSD over a large region (the SRYR in this study), and the improvement by weighing the dominance of species improved the precision of α-diversity (higher R 2 and lower P values of the linear regressions); and (3) the species diversity indices (α- and β-diversity) increased first and then they tended to be stable with the increase of precipitation in SRYR. These findings conclude that UAVB is suitable for monitoring multiscale PSD of an alpine grassland community over a large region, which will be useful for revealing the relationship of diversity-function, and helpful for conservation and sustainable management of the alpine grassland.