Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item Forecasting patient demand at urgent care clinics using explainable machine learning(John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology., 2023-09-01) Susnjak T; Maddigan PUrgent care clinics and emergency departments around the world periodically suffer from extended wait times beyond patient expectations due to surges in patient flows. The delays arising from inadequate staffing levels during these periods have been linked with adverse clinical outcomes. Previous research into forecasting patient flows has mostly used statistical techniques. These studies have also predominately focussed on short-term forecasts, which have limited practicality for the resourcing of medical personnel. This study joins an emerging body of work which seeks to explore the potential of machine learning algorithms to generate accurate forecasts of patient presentations. Our research uses datasets covering 10 years from two large urgent care clinics to develop long-term patient flow forecasts up to one quarter ahead using a range of state-of-the-art algorithms. A distinctive feature of this study is the use of eXplainable Artificial Intelligence (XAI) tools like Shapely and LIME that enable an in-depth analysis of the behaviour of the models, which would otherwise be uninterpretable. These analysis tools enabled us to explore the ability of the models to adapt to the volatility in patient demand during the COVID-19 pandemic lockdowns and to identify the most impactful variables, resulting in valuable insights into their performance. The results showed that a novel combination of advanced univariate models like Prophet as well as gradient boosting, into an ensemble, delivered the most accurate and consistent solutions on average. This approach generated improvements in the range of 16%–30% over the existing in-house methods for estimating the daily patient flows 90 days ahead.Item Supporting Students’ Academic Performance Using Explainable Machine Learning with Automated Prescriptive Analytics(MDPI (Basel, Switzerland), 2022-12) Ramaswami G; Susnjak T; Mathrani ALearning Analytics (LA) refers to the use of students’ interaction data within educational environments for enhancing teaching and learning environments. To date, the major focus in LA has been on descriptive and predictive analytics. Nevertheless, prescriptive analytics is now seen as a future area of development. Prescriptive analytics is the next step towards increasing LA maturity, leading to proactive decision-making for improving students’ performance. This aims to provide data-driven suggestions to students who are at risk of non-completions or other sub-optimal outcomes. These suggestions are based on what-if modeling, which leverages machine learning to model what the minimal changes to the students’ behavioral and performance patterns would be required to realize a more desirable outcome. The results of the what-if modeling lead to precise suggestions that can be converted into evidence-based advice to students. All existing studies in the educational domain have, until now, predicted students’ performance and have not undertaken further steps that either explain the predictive decisions or explore the generation of prescriptive modeling. Our proposed method extends much of the work performed in this field to date. Firstly, we demonstrate the use of model explainability using anchors to provide reasons and reasoning behind predictive models to enable the transparency of predictive models. Secondly, we show how prescriptive analytics based on what-if counterfactuals can be used to automate student feedback through prescriptive analytics.Item On Developing Generic Models for Predicting Student Outcomes in Educational Data Mining(MDPI (Basel, Switzerland), 2022-01-07) Ramaswami G; Susnjak T; Mathrani A; Cowling, M; Jha, MPoor academic performance of students is a concern in the educational sector, especially if it leads to students being unable to meet minimum course requirements. However, with timely prediction of students’ performance, educators can detect at-risk students, thereby enabling early interventions for supporting these students in overcoming their learning difficulties. However, the majority of studies have taken the approach of developing individual models that target a single course while developing prediction models. These models are tailored to specific attributes of each course amongst a very diverse set of possibilities. While this approach can yield accurate models in some instances, this strategy is associated with limitations. In many cases, overfitting can take place when course data is small or when new courses are devised. Additionally, maintaining a large suite of models per course is a significant overhead. This issue can be tackled by developing a generic and course-agnostic predictive model that captures more abstract patterns and is able to operate across all courses, irrespective of their differences. This study demonstrates how a generic predictive model can be developed that identifies at-risk students across a wide variety of courses. Experiments were conducted using a range of algorithms, with the generic model producing an effective accuracy. The findings showed that the CatBoost algorithm performed the best on our dataset across the F-measure, ROC (receiver operating characteristic) curve and AUC scores; therefore, it is an excellent candidate algorithm for providing solutions on this domain given its capabilities to seamlessly handle categorical and missing data, which is frequently a feature in educational datasets.

