Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item N-terminal oligomerization drives HDAC4 nuclear condensation and neurodevelopmental dysfunction in Drosophila(The Royal Society, 2025-10) Hawley HR; Sutherland-Smith AJ; Savoian MS; Fitzsimons HLHistone deacetylase four (HDAC4) undergoes dynamic nucleocytoplasmic shuttling, a process critical for regulating its activity. However, aberrant nuclear accumulation of HDAC4 is associated with both neurodevelopmental and neurodegenerative disease, and in our Drosophila model, impairs normal neuronal development. Upon nuclear accumulation, HDAC4 forms biomolecular condensates, previously termed aggregates, that correlate with the severity of defects in development of the Drosophila mushroom body and adult eye. Here we determined that nuclear condensation of HDAC4 is dependent on self-oligomerization, and that impairing oligomerization reduces condensation and the severity of neurodevelopmental phenotypes in Drosophila. HDAC4 condensates are highly dynamic and are stabilized by the presence of MEF2, which promotes their formation, ultimately exacerbating phenotypic severity. These data provide insight into the role of HDAC4 condensates in normal neuronal function and suggest that their dysregulation may contribute to neurodevelopmental disorders. Consequently, targeting oligomerization of HDAC4 and its interaction with MEF2 present potential therapeutic strategies for diseases associated with HDAC4 nuclear accumulation.Item Structural characterisation of nucleotide sugar short-chain dehydrogenases/reductases from the thermophilic pseudomurein-containing methanogen Methanothermobacter thermautotrophicus ΔH(John Wiley and Sons Ltd on behalf of Federation of European Biochemical Societies, 2025-09-03) Carbone V; Schofield LR; Edwards PJB; Sutherland-Smith AJ; Ronimus RSEpimerases and dehydratases are widely studied members of the extendedshort-chain dehydrogenase/reductase (SDR) enzyme superfamily and areimportant in nucleotide sugar conversion and diversification, for example,the interconversion of uridine diphosphate (UDP)-linked glucose andgalactose. Methanothermobacter thermautotrophicus contains a cluster ofgenes, the annotations of which indicate involvement in glycan biosynthesissuch as that of cell walls or capsular polysaccharides. In particular, genesencoding UDP-glucose 4-epimerase related protein (Mth375), UDP-glucose4-epimerase homologue (Mth380) and dTDP-glucose 4,6-dehydrataserelated protein (Mth373) may be involved in the biosynthesis of an unusualaminosugar in pseudomurein. In this paper, we present the structures ofMth375, an archaeal sugar epimerase/dehydratase protein (WbmF) deter-mined to a resolution of 2.0 A. The structure contains an N-terminalRossmann-fold domain with bound nicotinamide adenine dinucleotidehydride (NADH) and a C-terminal catalytic domain with bound UDP. Wealso present the structure for Mth373 co-crystallised with uridine-50-diphosphate-xylopyranose to a resolution of 1.96 A as a NAD+-dependentoxidative decarboxylase (UDP-xylose synthase; EC4.1.1.35). Molecularmodelling has also allowed for the identification of Mth380 as aUDP-N-acetylglucosamine 4-epimerase (WbpP; EC5.1.3.7), Mth631 as aUDP-glucose 4-epimerase (GalE; EC5.1.3.2) and Mth1789 as a classicaldTDP-D-glucose 4,6-dehydratase (EC4.2.1.46). The UDP–sugar specificityof each archaeal nucleotide sugar short-chain dehydrogenase/reductase.Item A Single-Plasmid Inducible-Replication System for High-Yield Production of Short Ff (f1, M13 or fd)-Phage-Derived Nanorods(John Wiley and Sons Ltd., 2025-04-01) León-Quezada RI; Miró MG; Khanum S; Sutherland-Smith AJ; Gold VAM; Rakonjac JFf (f1, M13 or fd) filamentous phages have been used for myriad applications including phage display, assembly of nanostructures and as carriers of agents used for diagnostic and therapeutic purposes. Recently, short Ff phage-derived functionalised nanorods have emerged as a superior alternative to full-length filamentous phages for applications from lateral flow assays to cell- and tissue-targeting. Their advantages, such as shorter length and the lack of antibiotic resistance genes, make them particularly promising for expanding the current scope of Ff bionanotechnology and biomedical applications. Limitations to the widespread use of Ff-derived nanorods include a requirement for two plasmids and the relatively low production efficiency. This is due to the presence of only the positive Ff origin of replication, allowing replication of only the positive strand. Here we describe a single-plasmid negative origin-containing inducible-replication system for nanorod production. These improvements simplify and increase nanorod production by two orders of magnitude compared with the constitutive positive origin-only production system. The high concentration of nanorods allows formation of higher-order structures, such as stacks and rafts, as imaged by transmission electron microscopy. In summary, our system will facilitate production and expand the applications of Ff-derived biological nanorods.Item In silico resurrection of the major vault protein suggests it is ancestral in modern eukaryotes(Oxford University Press, 25/07/2013) Daly TK; Sutherland-Smith AJ; Penny EDVaults are very large oligomeric ribonucleoproteins conserved among a variety of species. The rat vault 3D structure shows an ovoid oligomeric particle, consisting of 78 major vault protein monomers, each of approximately 861 amino acids. Vaults are probably the largest ribonucleoprotein structures in eukaryote cells, being approximately 70 nm in length with a diameter of 40 nm--the size of three ribosomes and with a lumen capacity of 50 million Å(3). We use both protein sequences and inferred ancestral sequences for in silico virtual resurrection of tertiary and quaternary structures to search for vaults in a wide variety of eukaryotes. We find that the vault's phylogenetic distribution is widespread in eukaryotes, but is apparently absent in some notable model organisms. Our conclusion from the distribution of vaults is that they were present in the last eukaryote common ancestor but they have apparently been lost from a number of groups including fungi, insects, and probably plants. Our approach of inferring ancestral 3D and quaternary structures is expected to be useful generally.Item Structural characterisation of methanogen pseudomurein cell wall peptide ligases homologous to bacterial MurE/F murein peptide ligases.(2022-09) Subedi BP; Schofield LR; Carbone V; Wolf M; Martin WF; Ronimus RS; Sutherland-Smith AJArchaea have diverse cell wall types, yet none are identical to bacterial peptidoglycan (murein). Methanogens Methanobacteria and Methanopyrus possess cell walls of pseudomurein, a structural analogue of murein. Pseudomurein differs from murein in containing the unique archaeal sugar N-acetyltalosaminuronic acid instead of N-acetylmuramic acid, β-1,3 glycosidic bonds in place of β-1,4 bonds and only l-amino acids in the peptide cross-links. We have determined crystal structures of methanogen pseudomurein peptide ligases (termed pMurE) from Methanothermus fervidus (Mfer762) and Methanothermobacter thermautotrophicus (Mth734) that are structurally most closely related to bacterial MurE peptide ligases. The homology of the archaeal pMurE and bacterial MurE enzymes is clear both in the overall structure and at the level of each of the three domains. In addition, we identified two UDP-binding sites in Mfer762 pMurE, one at the exterior surface of the interface of the N-terminal and middle domains, and a second site at an inner surface continuous with the highly conserved interface of the three domains. Residues involved in ATP binding in MurE are conserved in pMurE, suggesting that a similar ATP-binding pocket is present at the interface of the middle and the C-terminal domains of pMurE. The presence of pMurE ligases in members of the Methanobacteriales and Methanopyrales, that are structurally related to bacterial MurE ligases, supports the idea that the biosynthetic origins of archaeal pseudomurein and bacterial peptidoglycan cell walls are evolutionarily related.
