Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Return of the ghosts of dispersal past: Historical spread and contemporary gene flow in the blue sea star Linckia laevigata
    (ROSENSTIEL SCH MAR ATMOS SCI, 1/01/2014) Crandall ED; Treml EA; Liggins L; Gleeson L; Yasuda N; Barber PH; Wörheide G; Riginos C
    Marine animals inhabiting the Indian and Pacific oceans have some of the most extensive species ranges in the world, sometimes spanning over half the globe. These Indo-Pacific species present a challenge for study with both geographic scope and sampling density as limiting factors. Here, we augment and aggregate phylogeographic sampling of the iconic blue sea star, Linckia laevigata Linnaeus, 1758, and present one of the most geographically comprehensive genetic studies of any Indo-Pacific species to date, sequencing 392 base pairs of mitochondrial COI from 791 individuals from 38 locations spanning over 14,000 km. We first use a permutation based multiple-regression approach to simultaneously evaluate the relative influence of historical and contemporary gene flow together with putative barriers to dispersal. We then use a discrete diffusion model of phylogeography to infer the historical migration and colonization routes most likely used by L. laevigata across the Indo-Pacific. We show that estimates of genetic structure have a stronger correlation to geographic distances than to "oceanographic" distances from a biophysical model of larval dispersal, reminding us that population genetic estimates of gene flow and genetic structure are often shaped by historical processes. While the diffusion model was equivocal about the location of the mitochondrial most recent common ancestor (MRC A), we show that gene flow has generally proceeded in a step-wise manner across the Indian and Pacific oceans. We do not find support for previously described barriers at the Sunda Shelf and within Cenderwasih Bay. Rather, the strongest genetic disjunction is found to the east of Cenderwasih Bay along northern New Guinea. These results underscore the importance of comprehensive range-wide sampling in marine phylogeography.© 2014 Rosenstiel School of Marine and Atmospheric Science of the University of Miami.
  • Item
    A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean.
    (PUBLIC LIBRARY SCIENCE, 2013) Huelsken T; Keyse J; Liggins L; Penny S; Treml EA; Riginos C
    Giant clams (genus Tridacna) are iconic coral reef animals of the Indian and Pacific Oceans, easily recognizable by their massive shells and vibrantly colored mantle tissue. Most Tridacna species are listed by CITES and the IUCN Redlist, as their populations have been extensively harvested and depleted in many regions. Here, we survey Tridacna crocea and Tridacna maxima from the eastern Indian and western Pacific Oceans for mitochondrial (COI and 16S) and nuclear (ITS) sequence variation and consolidate these data with previous published results using phylogenetic analyses. We find deep intraspecific differentiation within both T. crocea and T. maxima. In T. crocea we describe a previously undocumented phylogeographic division to the east of Cenderawasih Bay (northwest New Guinea), whereas for T. maxima the previously described, distinctive lineage of Cenderawasih Bay can be seen to also typify western Pacific populations. Furthermore, we find an undescribed, monophyletic group that is evolutionarily distinct from named Tridacna species at both mitochondrial and nuclear loci. This cryptic taxon is geographically widespread with a range extent that minimally includes much of the central Indo-Pacific region. Our results reinforce the emerging paradigm that cryptic species are common among marine invertebrates, even for conspicuous and culturally significant taxa. Additionally, our results add to identified locations of genetic differentiation across the central Indo-Pacific and highlight how phylogeographic patterns may differ even between closely related and co-distributed species.