Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Food plant odor perception in three sympatric alpine grasshopper species (Orthoptera: Acrididae: Catantopinae) in Aotearoa New Zealand
    (Springer Nature, 2024-06-07) Nakano M; Park KC; Trewick SA; Morgan-Richards M
    The alpine grasshoppers Sigaus nivalis, Sigaus australis and Sigaus nitidus are sympatric in the central mountains of South Island, Aotearoa New Zealand. These grasshoppers feed on a range of alpine plants but show preference towards dicots over monocots. Because herbivorous insects often use smell and taste to locate and recognize food plants it was expected that these grasshoppers would show sensitivity to their favorite foods and potential sensitivity to nonhost plants. Here, we determined feeding preference in captivity allowing each of these three sympatric grasshoppers the same choice of six native alpine plant species. We analyzed the chemical compositions of the plants used in these experiments using gas-chromatograph coupled with mass-spectrometry (GC-MS) and then recorded olfactory responses in the grasshoppers to plant-derived smells (with synthetic compounds) using electroantennogram (EAG). The grasshoppers were able to distinguish between the potential food plants and ate the shrub Coriaria sarmentosa but not the grass Chionochloa pallens, however, the chemicals we detected in the six plant species were very similar. High sensitivity to fatty acid derived aldehydes (decanal, (E,Z)-2,6-nonadienal, hexanal) and a 6-carbon alcohol ((Z)-2-hexen-1-ol) compared to terpenoids (α-phellandrene, β-myrcene, β-ocimene, eucalyptol, (S)-(-)-limonene, (1S)-(-)-α-pinene) or an aromatic compound (2-phenylethanol) was recorded in the antennae of all three grasshopper species and no species- or sex-specific sensitivity to particular compounds was observed. As aldehydes and alcohols are emitted upon plant damage, it is possible that these generalist grasshoppers are sensitive to the smells of damaged plants rather than species-specific plant smells.
  • Item
    Lack of assortative mating might explain reduced phenotypic differentiation where two grasshopper species meet
    (John Wiley and Sons Ltd on behalf of European Society for Evolutionary Biology, 2022-04-12) Morgan-Richards M; Vilcot M; Trewick SA
    Hybridization is an evolutionary process with wide-ranging potential outcomes, from providing populations with important genetic variation for adaptation to being a substantial fitness cost leading to extinction. Here, we focussed on putative hybridization between two morphologically distinct species of New Zealand grasshopper. We collected Phaulacridium marginale and Phaulacridium otagoense specimens from a region where mitochondrial introgression had been detected and where their habitat has been modified by introduced mammals eating the natural vegetation and by the colonization of many non-native plant species. In contrast to observations in the 1970s, our sampling of wild pairs of grasshoppers in copula provided no evidence of assortative mating with respect to species. Geometric morphometrics on pronotum shape of individuals from areas of sympatry detected phenotypically intermediate specimens (putative hybrids), and the distribution of phenotypes in most areas of sympatry was found to be unimodal. These results suggest that hybridization associated with anthropogenic habitat changes has led to these closely related species forming a hybrid swarm, with random mating. Without evidence of hybrid disadvantage, we suggest a novel hybrid lineage might eventually result from the merging of these two species.