Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    The association between rainfall and human leptospirosis in Aotearoa New Zealand
    (Cambridge University Press, 2025-08-26) Tana T; Wada M; Benschop J; Vallee E
    Leptospirosis remains a significant occupational zoonosis in New Zealand, and emerging serovar shifts warrant a closer examination of climate-related transmission pathways. This study aimed to examine whether total monthly rainfall is associated with reported leptospirosis in humans in New Zealand. Poisson and negative binomial models were developed to examine the relationship between rainfall at 0-, 1-, 2-, and 3-month lags and the incidence of leptospirosis during the month of the report. Total monthly rainfall was positively associated with the occurrence of human leptospirosis in the following month by a factor of 1.017 (95% CI: 1.007–1.026), 1.023 at the 2-month lag (95% CI:1.013–1.032), and 1.018 at the 3-month lag (95% CI: 1.009–1.028) for every additional cm of rainfall. Variation was present in the magnitude of association for each of the individual serovars considered, suggesting different exposure pathways. Assuming that the observed associations are causal, this study supports that additional human cases are likely to occur associated with increased levels of rainfall. This provides the first evidence for including rainfall in a leptospirosis early warning system and to design targeted communication and prevention measures and provide resource allocation, particularly after heavy rainfall in New Zealand.
  • Item
    Investigating animals and environments in contact with leptospirosis patients in Aotearoa New Zealand reveals complex exposure pathways.
    (Taylor and Francis Group, 2025-02-12) Benschop J; Collins-Emerson JM; Vallee E; Prinsen G; Yeung P; Wright J; Littlejohn S; Douwes J; Fayaz A; Marshall JC; Baker MG; Quin T; Nisa S
    CASE HISTORY: Three human leptospirosis cases from a case-control study were recruited for in-contact animal and environment sampling and Leptospira testing between October 2020 and December 2021. These cases were selected because of regular exposure to livestock, pets, and/or wildlife, and sampling was carried out on their farms or lifestyle blocks (sites A-C), with veterinarians overseeing the process for livestock, and cases collecting environmental and wildlife samples. LABORATORY FINDINGS: Across the three sites, a total of 137 cattle, > 40 sheep, 28 possums, six dogs, six rats, three pigs and three rabbits were tested. Herd serology results on Site A, a dairy farm, showed infection with Tarassovi and Pomona; urinary shedding showed Leptospira borgpetersenii str. Pacifica. Animals were vaccinated against Hardjo, Pomona and Copenhageni. The farmer was diagnosed with Ballum. On Site B, a beef and sheep farm, serology showed infection with Pomona; animals were not vaccinated, and the farmer was diagnosed with Hardjo. On Site C, cattle were shedding L. borgpetersenii; animals were not vaccinated, and the case's serovar was indeterminate. Six wild animals associated with Sites A and C and one environmental sample from Site A were positive for pathogenic Leptospira by PCR. CONCLUSION: These findings highlight the complexity of potential exposures and the difficulty in identifying infection sources for human cases. This reinforces the need for multiple preventive measures such as animal vaccination, the use of personal protective equipment, pest control, and general awareness of leptospirosis to reduce infection risk in agricultural settings. CLINICAL RELEVANCE: Farms with unvaccinated livestock had Leptospira infections, highlighting the importance of animal vaccination. Infections amongst stock that were vaccinated emphasise the importance of best practice vaccination recommendations and pest control. Abbreviations: MAT: Microscopic agglutination test; PIC: Person in charge; PPE: Personalprotective equipment