Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Genome-Wide Analysis of the SRPP/REF Gene Family in Taraxacum kok-saghyz Provides Insights into Its Expression Patterns in Response to Ethylene and Methyl Jasmonate Treatments.
    (MDPI (Basel, Switzerland), 2024-07-07) He H; Wang J; Meng Z; Dijkwel PP; Du P; Shi S; Dong Y; Li H; Xie Q; Pollmann S
    Taraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.
  • Item
    Response of Ruminal Microbiota-Host Gene Interaction to High-Altitude Environments in Tibetan Sheep.
    (MDPI (Basel, Switzerland), 2022-10-17) Sha Y; Ren Y; Zhao S; He Y; Guo X; Pu X; Li W; Liu X; Wang J; Li S; Wahli W
    Altitude is the main external environmental pressure affecting the production performance of Tibetan sheep, and the adaptive evolution of many years has formed a certain response mechanism. However, there are few reports on the response of ruminal microbiota and host genomes of Tibetan sheep to high-altitude environments. Here, we conducted an integrated analysis of volatile fatty acids (VFAs), microbial diversity (16S rRNA), epithelial morphology, and epithelial transcriptome in the rumen of Tibetan sheep at different altitudes to understand the changes in ruminal microbiota−host interaction in response to high altitude. The differences in the nutritional quality of forage at different altitudes, especially the differences in fiber content (ADF/NDF), led to changes in rumen VFAs of Tibetan sheep, in which the A/P value (acetic acid/propionic acid) was significantly decreased (p < 0.05). In addition, the concentrations of IgA and IgG in Middle-altitude (MA) and High-altitude Tibetan sheep (HA) were significantly increased (p < 0.05), while the concentrations of IgM were significantly increased in MA (p < 0.05). Morphological results showed that the width of the rumen papilla and the thickness of the basal layer increased significantly in HA Tibetan sheep (p < 0.05). The 16S rRNA analysis found that the rumen microbial diversity of Tibetan sheep gradually decreased with increasing altitude, and there were some differences in phylum- and genus-level microbes at the three altitudes. RDA analysis found that the abundance of the Rikenellaceae RC9 gut group and the Ruminococcaceae NK4A214 group increased with altitudes. Furthermore, a functional analysis of the KEGG microbial database found the “lipid metabolism” function of HA Tibetan sheep to be significantly enriched. WGCNA revealed that five gene modules were enriched in “energy production and conversion”, “lipid transport and metabolism”, and “defense mechanisms”, and cooperated with microbiota to regulate rumen fermentation and epithelial immune barrier function, so as to improve the metabolism and immune level of Tibetan sheep at high altitude.