Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item Reproductive plasticity in response to the changing cluster size during the breeding period: a case study in a spider mite(Springer Nature, 2023-10) Weerawansha N; Wang Q; He XZAnimals living in clusters should adjust their reproductive strategies to adapt to the social environment. Theories predict that the benefits of cluster living would outweigh the costs of competition. Yet, it is largely unknown how animals optimize their reproductive fitness in response to the changing social environment during their breeding period. We used Tetranychus ludeni Zacher, a haplodiploid spider mite, to investigate how the ovipositing females modified their life-history traits in response to the change of cluster size (i.e., aggregation and dispersal) with a consistent population density (1 ♀/cm2). We demonstrate that (1) after females were shifted from a large cluster (16 ♀♀) to small ones (1 ♀, 5 and 10 ♀♀), they laid fewer and larger eggs with a higher female-biased sex ratio; (2) after females were shifted from small clusters to a large one, they laid fewer and smaller eggs, also with a higher female-biased sex ratio, and (3) increasing egg size significantly increased offspring sex ratio (% daughters), but did not increase immature survival. The results suggest that (1) females fertilize more larger eggs laid in a small population but lower the fertilization threshold and fertilize smaller eggs in a larger population, and (2) the reproductive adjustments in terms of egg number and size may contribute more to minimize the mate competition among sons but not to increase the number of inhabitants in the next generation. The current study provides evidence that spider mites can manipulate their reproductive output and adjust offspring sex ratio in response to dynamic social environments.Item Diets for Tamarixia triozae adults before releasing in augmentative biological control(Springer Nature, Switzerland AG for International Organization for Biological Control, 2022-06) Chen C; He XZ; Zhou P; Wang Q; Riddick EThe effectiveness of augmentative biological control using parasitoids often depends on their physiological state and the pest population density at the time of release. Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) is a primary host-feeding parasitoid of a serious invasive pest Bactericera cockerelli (Šulc) (Hemiptera: Triozidae). Here we investigated the effects of adult diets (honey, water, yeast, and hosts) and timing of their provision on T. triozae fitness and oviposition patterns, providing knowledge for enhancement of its biological control potential. Adults fed with honey for four days with no access to hosts or with water or yeast for one day followed by host feeding for three days had similar longevity and lifetime pest killing ability. Adults fed with only water for one day before release had significantly greater intrinsic rate of increase, shorter doubling time, and higher daily fecundity peak. Adults fed with honey or yeast for one day followed by host feeding for three days significantly flattened their daily oviposition curves. These findings have several implications for augmentative biological control using T. triozae. First, honey diet may allow at least four days for successful shipment of host-deprived adults without compromising biological control effectiveness. Second, the release of host-deprived adults with one-day water feeding may achieve rapid pest suppression when the pest population density is high. Finally, releasing host-deprived adults with one-day honey or yeast feeding followed by three-day host feeding can increase their establishment success and reduce the risk of massive removal of hosts when the pest population density is low.Item A haplodiploid mite adjusts fecundity and sex ratio in response to density changes during the reproductive period(15/10/2022) Weerawansha N; Wang Q; He XZPopulation density is one of the main socio-environmental factors that have critical impacts on reproduction of animals. Consequently, they need to adjust their reproductive strategies in response to changes of local population density. In this study we used a haplodiploid spider mite, Tetranychus ludeni Zacher (Acari: Tetranychidae), to test how population density dynamics during the reproductive period altered female reproductive performance. We demonstrate that females produced fewer eggs with a significantly higher female-biased sex ratio in dense populations. Reducing fecundity and increasing daughter production in a dense environment could be an advantageous strategy to minimise the intensity of local food competition. However, females also reduced their fecundity after arrival in a new site of larger area from a dense population, which may be associated with higher web production costs because females need to produce more webs to cover the larger area. There was no trade-off between egg number and size, and egg size had little impact on reproductive fitness. Therefore, T. ludeni females could adapt to the shift of population density during their reproductive period by manipulating the fecundity and offspring sex ratio but not the egg size.
