Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    DeepCAC: a deep learning approach on DNA transcription factors classification based on multi-head self-attention and concatenate convolutional neural network
    (BioMed Central Ltd, 2023-09-18) Zhang J; Liu B; Wu J; Wang Z; Li J
    Understanding gene expression processes necessitates the accurate classification and identification of transcription factors, which is supported by high-throughput sequencing technologies. However, these techniques suffer from inherent limitations such as time consumption and high costs. To address these challenges, the field of bioinformatics has increasingly turned to deep learning technologies for analyzing gene sequences. Nevertheless, the pursuit of improved experimental results has led to the inclusion of numerous complex analysis function modules, resulting in models with a growing number of parameters. To overcome these limitations, it is proposed a novel approach for analyzing DNA transcription factor sequences, which is named as DeepCAC. This method leverages deep convolutional neural networks with a multi-head self-attention mechanism. By employing convolutional neural networks, it can effectively capture local hidden features in the sequences. Simultaneously, the multi-head self-attention mechanism enhances the identification of hidden features with long-distant dependencies. This approach reduces the overall number of parameters in the model while harnessing the computational power of sequence data from multi-head self-attention. Through training with labeled data, experiments demonstrate that this approach significantly improves performance while requiring fewer parameters compared to existing methods. Additionally, the effectiveness of our approach  is validated in accurately predicting DNA transcription factor sequences.
  • Item
    DL-PPI: a method on prediction of sequenced protein-protein interaction based on deep learning
    (BioMed Central Ltd, 2023-12) Wu J; Liu B; Zhang J; Wang Z; Li J
    PURPOSE: Sequenced Protein-Protein Interaction (PPI) prediction represents a pivotal area of study in biology, playing a crucial role in elucidating the mechanistic underpinnings of diseases and facilitating the design of novel therapeutic interventions. Conventional methods for extracting features through experimental processes have proven to be both costly and exceedingly complex. In light of these challenges, the scientific community has turned to computational approaches, particularly those grounded in deep learning methodologies. Despite the progress achieved by current deep learning technologies, their effectiveness diminishes when applied to larger, unfamiliar datasets. RESULTS: In this study, the paper introduces a novel deep learning framework, termed DL-PPI, for predicting PPIs based on sequence data. The proposed framework comprises two key components aimed at improving the accuracy of feature extraction from individual protein sequences and capturing relationships between proteins in unfamiliar datasets. 1. Protein Node Feature Extraction Module: To enhance the accuracy of feature extraction from individual protein sequences and facilitate the understanding of relationships between proteins in unknown datasets, the paper devised a novel protein node feature extraction module utilizing the Inception method. This module efficiently captures relevant patterns and representations within protein sequences, enabling more informative feature extraction. 2. Feature-Relational Reasoning Network (FRN): In the Global Feature Extraction module of our model, the paper developed a novel FRN that leveraged Graph Neural Networks to determine interactions between pairs of input proteins. The FRN effectively captures the underlying relational information between proteins, contributing to improved PPI predictions. DL-PPI framework demonstrates state-of-the-art performance in the realm of sequence-based PPI prediction.
  • Item
    DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites.
    (29/06/2022) Zhang J; Liu B; Wang Z; Lehnert K; Gahegan M
    BACKGROUND: Addressing the laborious nature of traditional biological experiments by using an efficient computational approach to analyze RNA-binding proteins (RBPs) binding sites has always been a challenging task. RBPs play a vital role in post-transcriptional control. Identification of RBPs binding sites is a key step for the anatomy of the essential mechanism of gene regulation by controlling splicing, stability, localization and translation. Traditional methods for detecting RBPs binding sites are time-consuming and computationally-intensive. Recently, the computational method has been incorporated in researches of RBPs. Nevertheless, lots of them not only rely on the sequence data of RNA but also need additional data, for example the secondary structural data of RNA, to improve the performance of prediction, which needs the pre-work to prepare the learnable representation of structural data. RESULTS: To reduce the dependency of those pre-work, in this paper, we introduce DeepPN, a deep parallel neural network that is constructed with a convolutional neural network (CNN) and graph convolutional network (GCN) for detecting RBPs binding sites. It includes a two-layer CNN and GCN in parallel to extract the hidden features, followed by a fully connected layer to make the prediction. DeepPN discriminates the RBP binding sites on learnable representation of RNA sequences, which only uses the sequence data without using other data, for example the secondary or tertiary structure data of RNA. DeepPN is evaluated on 24 datasets of RBPs binding sites with other state-of-the-art methods. The results show that the performance of DeepPN is comparable to the published methods. CONCLUSION: The experimental results show that DeepPN can effectively capture potential hidden features in RBPs and use these features for effective prediction of binding sites.