Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    The Erosion of Cybersecurity Zero-Trust Principles Through Generative AI: A Survey on the Challenges and Future Directions
    (MDPI (Basel, Switzerland), 2025-12-01) Xu D; Gondal I; Yi X; Susnjak T; Watters P; McIntosh TR
    Generative artificial intelligence (AI) and persistent empirical gaps are reshaping the cyber threat landscape faster than Zero-Trust Architecture (ZTA) research can respond. We reviewed 10 recent ZTA surveys and 136 primary studies (2022–2024) and found that 98% provided only partial or no real-world validation, leaving several core controls largely untested. Our critique, therefore, proceeds on two axes: first, mainstream ZTA research is empirically under-powered and operationally unproven; second, generative-AI attacks exploit these very weaknesses, accelerating policy bypass and detection failure. To expose this compounding risk, we contribute the Cyber Fraud Kill Chain (CFKC), a seven-stage attacker model (target identification, preparation, engagement, deception, execution, monetization, and cover-up) that maps specific generative techniques to NIST SP 800-207 components they erode. The CFKC highlights how synthetic identities, context manipulation and adversarial telemetry drive up false-negative rates, extend dwell time, and sidestep audit trails, thereby undermining the Zero-Trust principles of verify explicitly and assume breach. Existing guidance offers no systematic countermeasures for AI-scaled attacks, and that compliance regimes struggle to audit content that AI can mutate on demand. Finally, we outline research directions for adaptive, evidence-driven ZTA, and we argue that incremental extensions of current ZTA that are insufficient; only a generative-AI-aware redesign will sustain defensive parity in the coming threat cycle.
  • Item
    From Google Gemini to OpenAI Q* (Q-Star): A Survey on Reshaping the Generative Artificial Intelligence (AI) Research Landscape
    (MDPI (Basel, Switzerland), 2025-02-01) McIntosh TR; Susnjak T; Liu T; Watters P; Xu D; Liu D; Halgamuge MN; Mladenov V
    This comprehensive survey explored the evolving landscape of generative Artificial Intelligence (AI), with a specific focus on the recent technological breakthroughs and the gathering advancements toward possible Artificial General Intelligence (AGI). It critically examined the current state and future trajectory of generative AI, exploring how innovations in developing actionable and multimodal AI agents with the ability scale their “thinking” in solving complex reasoning tasks are reshaping research priorities and applications across various domains, while the survey also offers an impact analysis on the generative AI research taxonomy. This work has assessed the computational challenges, scalability, and real-world implications of these technologies while highlighting their potential in driving significant progress in fields like healthcare, finance, and education. Our study also addressed the emerging academic challenges posed by the proliferation of both AI-themed and AI-generated preprints, examining their impact on the peer-review process and scholarly communication. The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare, and outlined a strategy for future AI research that focuses on a balanced and conscientious use of generative AI as its capabilities continue to scale.