Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Broiler Age Influences the Apparent Metabolizable Energy of Soybean Meal and Canola Meal
    (MDPI (Basel, Switzerland), 2023-01-02) Khalil MM; Abdollahi MR; Zaefarian F; Chrystal PV; Ravindran V
    The effects of broiler age on the apparent metabolizable energy (AME) and nitrogen-corrected AME (AMEn) of soybean meal (SBM) and canola meal (CM) were examined. A corn-SBM basal diet was developed, and two test diets were formulated by substituting (w/w) 300 g/kg of the basal diet with SBM or CM. Six groups of broiler chickens, aged 1–7, 8–14, 15–21, 22–28, 29–35 or 36–42 d post-hatch, were utilized. Each diet, in pellet form, was randomly allocated to six replicate cages in each age group. Except for the 1–7 d age group, the birds were fed a starter (d 1–21) and/or a finisher (d 22–35) diet prior to the introduction of the experimental diets. The number of birds per cage was 10 (d 1–7), 8 (d 8–14) and 6 (d 15–42). The AME and AMEn of SBM and CM were determined by total excreta collection. The data for each protein source were subjected to orthogonal polynomial contrasts using the General Linear Models procedure. Bird age decreased the retention of dry matter quadratically (p < 0.001) for both SBM and CM. The retention of nitrogen decreased linearly (p < 0.001) with the advancing age of broilers for SBM and CM. The AMEn of SBM and CM decreased quadratically (p < 0.001) as the birds grew older. The highest AMEn was observed during week 1 for both SBM and CM, then declined until week 3, followed by increases thereafter. The current results showed that the age of broiler chickens influenced the AMEn of SBM and CM and supported the use of age-dependent AMEn of feed ingredients in diet formulations.
  • Item
    Basal ileal endogenous amino acid flow in broiler chickens as influenced by age
    (Elsevier Inc, 2021-08) Barua M; Abdollahi MR; Zaefarian F; Wester TJ; Girish CK; Chrystal PV; Ravindran V
    The current study was carried out to measure the basal ileal endogenous amino acid (EAA) flow in male broilers (Ross 308) at different ages (d 7, 14, 21, 28, 35, and 42), following the feeding of a nitrogen-free diet. Titanium dioxide (5 g/kg) was included as an indigestible marker. The nitrogen-free diet was offered for four days prior to ileal digesta collection to 6 replicate cages housing 14 (d 3–7), 12 (d 10–14), 10 (d 17–21), 8 (d 24–28), 8 (d 31–35), and 6 (d 38–42) birds per cage. The basal EAA flow was calculated as g/kg DM intake. The amino acid (AA) profile of endogenous protein, expressed as g/100 g protein, was also calculated. The basal endogenous flow of nitrogen and all individual and total AA decreased quadratically (P < 0.05 to 0.001), with flows being higher on d 7, then decreasing on d 14, plateauing until d 35 and decreasing further on d 42. The concentrations of Trp, Cys, and Gly in the endogenous protein increased linearly (P < 0.01 to 0.001) with advancing age, whereas a linear decrease (P < 0.001) was noted for Lys. A quadratic influence (P < 0.05 to 0.001) was observed for the concentrations of Ile, Leu, Met, Val, and Asp. These changes in the endogenous protein profile may be attributed to variations in the contribution of endogenous sources with age but delineating the exact contribution of different sources is complicated. Overall, the current findings suggest that the basal ileal EAA flow is influenced by broiler age and age-specific EAA flows may need to be considered to standardize the AA digestibility.
  • Item
    Influence of Broiler Age on the Apparent Metabolizable Energy of Cereal Grains Determined Using the Substitution Method
    (MDPI (Basel, Switzerland), 2022-01-13) Khalil MM; Abdollahi MR; Zaefarian F; Chrystal PV; Ravindran V
    The present study investigated the influence of broiler age on the AMEn of wheat, sorghum, barley, and corn using the substitution method at six different ages (days 7, 14, 21, 28, 35, and 42). A corn-soybean meal basal diet was formulated and, the test diets were developed by replacing (w/w) 300 g/kg of the basal diet with wheat, sorghum, barley, or corn. Bird age influenced (p < 0.001) the AMEn of wheat and sorghum but had no effect (p > 0.05) on those of barley and corn. The AMEn of wheat increased with age (p < 0.001) from 12.53 MJ/kg DM in week 1 to 14.55 MJ/kg DM in week 2, then declined subsequently, but no linear or quadratic responses were observed. The AMEn of sorghum demonstrated a quadratic response (p < 0.05), increasing from 12.84 MJ/kg DM in week 1 to 13.95 MJ/kg DM in week 2, and then plateauing to week 6. Overall, the present results suggest that the effect of broiler age on the AMEn varies depending on the grain type. The current data suggest that the application of age-dependent AME or AMEn of wheat and sorghum will lead to more precise feed formulations.
  • Item
    Influence of Age on the Standardized Ileal Amino Acid Digestibility of Corn and Barley in Broilers
    (MDPI (Basel, Switzerland), 2021-12) Barua M; Abdollahi MR; Zaefarian F; Wester TJ; Girish CK; Chrystal PV; Ravindran V
    The aim of this study was to determine the standardized ileal digestibility coefficients (SIDCs) of nitrogen (N) and amino acids (AAs) in corn and barley at six different ages (days 7, 14, 21, 28, 35 and 42) of broilers using the direct method. The apparent AA digestibility coefficients were corrected using age-appropriate basal endogenous AA losses. No age effect (p > 0.05) was noted for the SIDC of N in corn. The average SIDC of indispensable AAs (IAAs) and total AAs (TAAs) was influenced in a quadratic manner (p < 0.05) with the values being higher at day 7 that decreased at day 14, increased and plateaued between days 21 and 35 and dropped again at day 42. The average SIDC of dispensable AAs (DAAs) was influenced linearly (p < 0.05). In barley, the SIDC of N and average IAAs, DAAs and TAAs was affected (quadratic; p < 0.001) by age. The digestibility increased from day 7 to 21 and then plateaued up to day 42. The present findings confirm that the SIDC of AA in corn and barley are influenced by broiler age and that the age effect on AA digestibility may need to be considered for precise feed formulation.