Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item Effect of iron-manganese oxide on the degradation of deoxynivalenol in feed and enhancement of growth performance and intestinal health in weaned piglets.(Elsevier B.V., 2024-10-28) Wu C; Song J; Liu X; Zhang Y; Zhou Z; Thomas DG; Wu B; Yan X; Li J; Zhang R; Wu F; Cheng C; Pu X; Wang XDeoxynivalenol (DON), a prevalent and highly toxic mycotoxin in animal feed, poses significant risks to livestock health and productivity. This study evaluates the effectiveness of iron-manganese oxide (Fe/Mn oxides) in degrading DON. The DON degradation rate of Fe/Mn oxide reached 98.46 % in a controlled solution under specific conditions (0.2 % concentration, 37-85 °C, pH 6-7, 1-minute reaction time). When applied to actual feed, it reduced DON levels by approximately 49.3 % and remained stable in simulated gastrointestinal environments of weaned piglets. A 28-day trial involving 48 weaned piglets assessed the impacts of Fe/Mn oxides on health and growth. Results indicated that piglets consuming contaminated feed without the treatment exhibited reduced growth and compromised gut integrity, which were significantly mitigated by the addition of Fe/Mn oxides. Therefore, Fe/Mn oxides effectively reduce DON in feed and alleviate adverse health effects in piglets, making them a viable option to enhance safety and performance in mycotoxin-prone environments.Item Prevalence and genetic diversity of Theileria equi from horses in Xinjiang Uygur Autonomous region, China.(Elsevier B.V., 2023-07-01) Zhang Y; Shi Q; Laven R; Li C; He W; Zheng H; Liu S; Lu M; Yang DA; Guo Q; Chahan BTheileria equi is a tick-borne intracellular apicomplexan protozoan parasite that causes equine theileriosis (ET). ET is an economically important disease with a worldwide distribution that significantly impacts international horse movement. Horses are an essential part of the economy in Xinjiang which is home to ∼10% of all the horses in China. However, there is very limited information on the prevalence and genetic complexity of T. equi in this region. Blood samples from 302 horses were collected from May to September 2021 in Ili, Xinjiang, and subjected to PCR examination for the presence of T. equi. In addition, a Bayesian latent class model was employed to estimate the true prevalence of T. equi, and a phylogenetic analysis was carried out based on the 18S rRNA gene of T. equi isolates. Seventy-two horses (23.8%) were PCR positive. After accounting for the imperfect PCR test using a Bayesian latent class model, the estimated true prevalence differed considerably between age groups, being 10.8% (95%CrI: 5.8% - 17.9%) in ≤ 3-year-old horses and 35.7% (95%CrI: 28.1% - 44.5%) in horses that were > 3 year-old. All T. equi isolates had their 18S rRNA gene (430bp) sequenced and analyzed in order to identify whether there were multiple genotypes of T. equi in the Xinjiang horse population. All of the 18S rRNA genes clustered into one phylogenetic group, clade E, which is thus probably the dominant genotype of T. equi in Xinjiang, China. To summarize, we monitored the prevalence of T. equi in horses of Xinjiang, China, with a focus on the association between age and the occurrence of T. equi by Bayesian modelling, accompanied by the genotyping of T. equi isolates. Obtaining the information on genotypes and age structure is significant in monitoring the spread of T. equi and studying the factors responsible for the distribution.Item Transcriptome-Wide Gene Expression Plasticity in Stipa grandis in Response to Grazing Intensity Differences(MDPI (Basel, Switzerland), 2021-11-02) Dang Z; Jia Y; Tian Y; Li J; Zhang Y; Huang L; Liang C; Lockhart PJ; Matthew C; Li FY; Hobza ROrganisms have evolved effective and distinct adaptive strategies to survive. Stipa grandis is a representative species for studying the grazing effect on typical steppe plants in the Inner Mongolia Plateau. Although phenotypic (morphological and physiological) variations in S. grandis in response to long-term grazing have been identified, the molecular mechanisms underlying adaptations and plastic responses remain largely unknown. Here, we performed a transcriptomic analysis to investigate changes in gene expression of S. grandis under four different grazing intensities. As a result, a total of 2357 differentially expressed genes (DEGs) were identified among the tested grazing intensities, suggesting long-term grazing resulted in gene expression plasticity that affected diverse biological processes and metabolic pathways in S. grandis. DEGs were identified in RNA-Seq and qRT-PCR analyses that indicated the modulation of the Calvin-Benson cycle and photorespiration metabolic pathways. The key gene expression profiles encoding various proteins (e.g., ribulose-1,5-bisphosphate carboxylase/oxygenase, fructose-1,6-bisphosphate aldolase, glycolate oxidase, etc.) involved in these pathways suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of S. grandis. Our findings provide scientific clues for improving grassland use and protection and identifying important questions to address in future transcriptome studies.Item Juvenile socio-sexual experience determines lifetime sperm expenditure and adult survival in a polygamous moth, Ephestia kuehniella(Wiley, 8/02/2023) Liu J; He XZ; Zheng X-L; Zhang Y; Wang QMale animals often adjust their sperm investment in response to sperm competition environment. To date, only a few studies have investigated how juvenile socio-sexual settings affect sperm production before adulthood and sperm allocation during the first mating. Yet, it is unclear whether juvenile socio-sexual experience (1) determines lifetime sperm production and allocation in any animal species; (2) alters the eupyrene:apyrene sperm ratio in lifetime ejaculates of any lepidopteran insects, and (3) influences lifetime ejaculation patterns, number of matings and adult longevity. Here we used a polygamous moth, Ephestia kuehniella, to address these questions. Upon male adult emergence from juveniles reared at different density and sex ratio, we paired each male with a virgin female daily until his death. We dissected each mated female to count the sperm transferred and recorded male longevity and lifetime number of matings. We demonstrate for the first time that males ejaculated significantly more eupyrenes and apyrenes in their lifetime after their young were exposed to juvenile rivals. Adult moths continued to produce eupyrene sperm, contradicting the previous predictions for lepidopterans. The eupyrene:apyrene ratio in the lifetime ejaculates remained unchanged in all treatments, suggesting that the sperm ratio is critical for reproductive success. Male juvenile exposure to other juveniles regardless of sex ratio caused significantly shorter adult longevity and faster decline in sperm ejaculation over successive matings. However, males from all treatments achieved similar number of matings in their lifetime. This study provides insight into adaptive resource allocation by males in response to juvenile social-sexual environment.
