Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 8 of 8
  • Item
    Physico-Chemical, Microstructural, and Cooking Characteristics of Faba Bean (Vicia faba) Varieties From New Zealand
    (Wiley Periodicals LLC, 2025-09-01) Navneet; Singh J; Ajomiwe NI; Kaur L
    This research examines the physical and microstructural properties of New Zealand faba beans (Vicia faba), with a focus on their influence on swelling, hydration, and cooking characteristics. Four native varieties (Early Long Pod, Evergreen, Coles Dwarf, and Janet) were studied. No statistically significant differences were found in the seed physical characteristics, including sphericity, equivalent diameter, thousand kernel weight, seed volume, and surface area, among the varieties. The faba bean seeds showed high levels of protein (24%–27%) and starch content (35%–39%), with Coles Dwarf exhibiting a significantly higher protein content. Cooking times varied among the varieties and were decreased by at least 30 min for all varieties when seeds were soaked before cooking. Evergreen seeds took the least time to cook, while those from Janet required the longest time, which was significantly higher than the other varieties, especially when soaked faba beans were used for cooking. These results were in accordance with the scanning electron microscopy (SEM) results, which revealed significant differences in cotyledon cell wall thickness and surface ridge morphology. Despite a relatively high hydration capacity, Janet required the longest cooking time, suggesting that its thicker cotyledon cell walls and folded surface topography may limit thermal softening despite adequate water uptake. The rapid visco analyzer (RVA) results also showed that the Janet flour exhibited significantly higher peak viscosity, indicating strong water-holding and gelation potential during heating. The Coles Dwarf variety, which exhibited the highest protein content, displayed pronounced surface ridges but showed a significantly lower hydration index, highlighting how macronutrient composition and microstructure jointly influence water uptake and pasting behavior. These results highlight the varying suitability of each variety for different food applications, considering their distinct physico-chemical and cooking properties.
  • Item
    Investigation of various plant protein ingredients for processed cheese analogues: physical properties and microstructure compared with milk proteins
    (Oxford University Press on behalf of the Institute of Food Science and Technology (IFST), 2025-01-08) Lu D; Roy D; Acevedo-Fani A; Singh H; Ye A
    This study evaluated various structural and physical properties of several plant proteins in the context of processed cheese analogues (PCAs). A total of 9 plant protein sources were selected to formulate PCA samples. The samples were processed at 90 ◦C for 10 min using either a rapid visco analyzer or water bath for different tests. Rheological analysis revealed that PCA samples formulated with plant proteins all exhibited solid-like behaviour. PCAs containing legume proteins had a higher storage modulus (G’) than that of rennet casein (RC) cheese samples, while canola protein samples showed the lowest G’ values. Zein-based PCA had the highest hardness and chewiness but softened when subjected to heat during the stretchability test. In contrast, PCAs containing chickpea, mung bean, or pea proteins exhibited similar hardness to RC-based cheeses but had poorer springiness, cohesiveness, and resilience. Plant protein-based PCAs also lacked melting and stretchability properties due to the absence of a continuous protein network. When ranking all proteins in PCAs based on viscosity, rheological, and textural properties, lentil protein scored the highest, followed by hemp and quinoa proteins, performing most similarly to casein protein. The presented comparison of different plant proteins in PCAs provides valuable insights for cheese analogue development.
  • Item
    Characterization of Al-12Si Thin-Wall Properties Fabricated with Laser Direct Energy Deposition
    (MDPI (Basel, Switzerland), 2023-08-24) Rumman R; Manjaiah M; Touzé S; Sims RA; Hascoët J-Y; Quinton JS; Narayanan JA; Kaji F; Pathak S
    Additive manufacturing is an emerging process that is used to manufacture industrial parts layer by layer and can produce a wide range of geometries for various applications. AM parts are adopted for aerospace, automobiles, antennas, gyroscopes, and waveguides in electronics. However, there are several challenges existing in manufacturing Al components using the AM process, and their mechanical and microstructural properties are not yet fully validated. In the present study, a gas-atomised powder of a eutectic Al-12Si alloy was used as feedstock for the Laser Direct Energy Deposition (LDED) process. A SEM analysis of Al-12Si powder used for processing illustrated that particles possess appropriate morphology for LDED. A numerical control system was used to actuate the deposition head towards printing positions. The deposited samples revealed the presence of Al-rich and Al-Si eutectic regions. The porosity content in the samples was found to be around 2.6%. Surface profile roughness measurements and a microstructural analysis of the samples were also performed to assess the fabricated sample in terms of the roughness, porosity, and distribution of Al and Al/Si eutectic phases. The tensile properties of fabricated thin walls were better compared to casted Al alloys due to the uniform distribution of Si in each layer. Micro-hardness tests on the deposited samples showed a hardness of 95 HV, which is equivalent to casted and powder bed fusion melting samples. The gas atomised Al-12Si powders are highly reflective to a laser and also quick oxidation takes place, which causes defects, porosity, and the balling effect during fabrication. The results can be used as a base guide for the further fabrication of aerospace component design with high structural integrity.
  • Item
    Differences in Aroma Metabolite Profile, Microstructure, and Rheological Properties of Fermented Milk Using Different Cultures
    (MDPI (Basel, Switzerland), 2023-05-02) Nguyen HTH; Gomes Reis M; Wa Y; Alfante R; Chanyi RM; Altermann E; Day L; Božani´c R
    Texture and flavour are the key attributes determining sensory quality and are highly affected by starter cultures. A selection of phenotypic strains is needed to create diverse texture and flavour to meet consumers' preferences. In this study, the use of five lactic acid bacteria strains in the production of fermented milk, along with the metabolite profiles, microstructure, and rheological properties of the fermented milk samples, was investigated. Our results showed that Lactobacillus helveticus (LH) and Streptococcus thermophilus (ST) had a stronger acidification during fermentation but resulted in products with a coarser protein network compared to Lactococcus lactis (BL1) and Leuconostoc mesenteroides (CL3). Milk fermented by LH had the highest viscosity and exopolysaccharide concentration, while milk fermented by ST had the highest concentration of diacetyl. Although Leuconostoc pseudomesenteroides (CL3ST) had a minimal acidification capability, it produced high levels of ethyl-derived compounds associated with sweet, fruity, and floral fragrances. The results demonstrated that LH and ST could be used as starter cultures targeting fermented milks with different viscosities, while BL1, CL3, and CL3ST are suitable as adjunct cultures to impact different acidic sharpness and flavour notes.
  • Item
    High Protein Yangyu jiaotuan (洋芋搅团): In Vitro Oral-Gastro-Small Intestinal Starch Digestion and Some Physico-Chemical, Textural, Microstructural, and Rheological Properties
    (MDPI (Basel, Switzerland), 2023-06-23) Zeng F; Abhilasha A; Chen Y; Zhao Y; Liu G; Kaur L; Singh J; Rodríguez‑García ME
    Biomimetic foods are expected to have potential health benefits for the management and prevention of chronic diseases, such as diabetes and cardiovascular disease. In the current research, two commercially available and affordable plant proteins (soy protein isolate-SPI and pea protein isolate-PPI) at two levels (5%, 10%) were added to the Yangyu jiaotuan with the objective of developing a product with reduced glycaemic properties and high protein content while maintaining its original taste and texture. The results showed that several important textural properties such as hardness and chewiness did not change significantly during the refrigerated storage. The storage modulus G' increased with refrigerated storage time for different samples, but there were significant differences among the five samples (with and without protein addition) with respect to frequency dependence during rheological measurements. The in vitro starch digestion experiments showed that the starch hydrolysis of Yangyu jiaotuan decreased considerably (by up to 42.08%) with the increase in PPI content and during refrigerated storage due to starch retrogradation. Protein has protected the microstructure and there was less damage when compared to samples without protein. The bimodal peaks of the particle size distribution curves showed that the newly developed Yangyu jiaotuan contains two different sizes of particles; the smaller particles (~30 μm) corresponded to PPI and starch granules, while the larger particles corresponded to the fragments of the gel network of the starch matrix. Based on the above results, Yangyu jiaotuan mixed with pea protein is a convenient potato staple food product, which complies with the biomimetic potato food very well.
  • Item
    Kinetics of pepsin-induced hydrolysis and the coagulation of milk proteins
    (Elsevier Inc and the Federation of Animal Science Societies on behalf of the American Dairy Science Association, 2022-02) Yang M; Ye A; Yang Z; Everett DW; Gilbert EP; Singh H
    Hydrolysis-induced coagulation of casein micelles by pepsin occurs during the digestion of milk. In this study, the effect of pH (6.7–5.3) and pepsin concentration (0.110–2.75 U/mL) on the hydrolysis of κ-casein and the coagulation of the casein micelles in bovine skim milk was investigated at 37°C using reverse-phase HPLC, oscillatory rheology, and confocal laser scanning microscopy. The hydrolysis of κ-casein followed a combined kinetic model of first-order hydrolysis and putative pepsin denaturation. The hydrolysis rate increased with increasing pepsin concentration at a given pH, was pH dependent, and reached a maximum at pH ~6.0. Both the increase in pepsin concentration and decrease in pH resulted in a shorter coagulation time. The extent of κ-casein hydrolysis required for coagulation was independent of the pepsin concentration at a given pH and, because of the lower electrostatic repulsion between para-casein micelles at lower pH, decreased markedly from ~73% to ~33% when pH decreased from 6.3 to 5.3. In addition, the rheological properties and the microstructures of the coagulum were markedly affected by the pH and the pepsin concentration. The knowledge obtained from this study provides further understanding on the mechanism of milk coagulation, occurring at the initial stage of transiting into gastric conditions with high pH and low pepsin concentration.
  • Item
    Rheology, Microstructure, and Storage Stability of Emulsion-Filled Gels Stabilized Solely by Maize Starch Modified with Octenyl Succinylation and Pregelatinization
    (MDPI (Basel, Switzerland), 2021-04-12) Jo M; Chang MJ; Goh KKT; Ban C; Choi YJ; Davidovich-Pinhas M
    We prepared emulsion-filled gels stabilized using octenyl succinic anhydride-modified and pregelatinized maize starch (OSA-PGS). The effect of the oil volume fraction (Φ, 0.05-0.20) and OSA-PGS concentration (3-10% w/v) on the rheological and microstructural properties of the emulsion-filled gels was evaluated. Confocal fluorescence images showed that OSA-PGS stabilized the emulsion, indicated by the formation of a thick layer surrounding the oil droplets, and simultaneously gelled the aqueous phase. All of the emulsions exhibited shear-thinning flow behavior, but only those with 10% w/v OSA-PGS were categorized as Herschel-Bulkley fluids. The rheological behavior of the emulsion-filled gels was significantly affected by both the OSA-PGS concentration and Φ. The mean diameters (D1,0, D3,2, and D4,3) of oil droplets with 10% w/v OSA-PGS were stable during 30 days of storage under ambient conditions, indicating good stability. These results provide a basis for the design of systems with potential applications within the food industry.
  • Item
    Evaluation of formulation design on the physical and structural properties of commercial cream cheeses
    (John Wiley and Sons Ltd on behalf of Institute of Food, Science and Technology (IFSTTF)., 2022-10) Kim J; Watkinson P; Matia-Merino L; Smith JR; Golding M
    This study investigated how the compositional properties and formulation design of commercial cream cheese products model cheese influenced physical and structural properties as compared to a model cheese composition. Of the seven products evaluated, three were block format (B), two were spreadable (S) and two were spreadable light (SL), with fat contents ranging from 13.7 to 35.7%. The majority of cream cheese products indicated the inclusion of starter culture, and all formulations contained one or more stabilisers. Protein/moisture (p/m) ratio, i.e. the effective protein concentration in the non-fat substance, was seen to most strongly correlate with material properties, with a positive slope for fracture stress (R2 = 0.808) and modulus of deformability (R2 = 0.721). In terms of outliers, the datapoint for SL2 on this modulus versus p/m graph was lower than its regression line, and one rationale is that lower fat content (13.7%) gave a lower modulus from the milkfat component at 10°C test temperature. B1, with the highest p/m of 0.17, had a more dense distribution of larger fat globules coated with proteins than B2 and B3. Fracture stress and modulus of deformability were noted to be higher for full-fat than for lower fat cheese. In all products, elastic characteristics dominated viscous flow as expected. Findings have demonstrated that significant variance exists across the material properties of commerical cream cheeses, and which shows specific dependencies on their formulation.