Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Nutrient-adequate diets with the lowest greenhouse gas emissions or price are the least acceptable—insights from dietary optimisation modelling using the iOTA model®
    (Frontiers Media S.A., 2025-08-01) Tavan M; Smith NW; Fletcher AJ; Hill JP; McNabb WC; Das A
    Over the past decade, there has been an increasing interest in the environmental sustainability of diets because food systems are responsible for a third of the anthropogenic greenhouse gas emissions (GHGE). However, less attention has been paid to the nutrient adequacy, consumer acceptability, and affordability of such diets. Such knowledge is particularly scarce in New Zealand, where approximately 40% of adults and 20% of children may live under severe to moderate food insecurity. The iOTA Model® is a country-specific dietary optimisation tool designed to fill this gap by bringing the various aspects of diet sustainability together and providing evidence-based knowledge on not just the environmental impact of food but also its economic and nutritional sustainability. The iOTA Model® was constructed using mixed integer linear programming by integrating New Zealand-specific dietary data. Features such as digestibility and bioavailability considerations have been incorporated as part of the iOTA Model®, allowing for a more accurate estimation of nutrient supply. The model is available as an open-access tool and allows users to explore various dimensions of a sustainable diet. Eight optimisation scenarios, along with baseline diets, were investigated for adult males and females in New Zealand. Results showed that reducing dietary GHGE or price by approximately 80% was possible while meeting nutrient adequacy requirements. However, such diets deviated substantially from the baseline eating patterns, indicating lower consumer acceptability, and only included a limited variety of foods. On the contrary, diets with minimum deviation from baseline remained realistic while adhering to nutrient targets and reducing GHGE by 10 and 30% in female and male consumers aged 19–30 years, respectively, and weekly price remained below the baseline. Expansion of the model to additional countries and its open-access nature will allow independent dietary sustainability research through optimisation.
  • Item
    Targeted dairy fortification: leveraging bioactive compounds to enhance nutritional value
    (Taylor and Francis Group, 2025-06-30) Bagheri H; Akhavan-Mahdavi S; Sarabi-Aghdam V; Mirarab Razi S; Singh Beniwal A; Rashidinejad A
    Dairy products, rich in nutrients, are crucial for human health and disease prevention. Recent trends focus on enhancing their nutritional value by fortifying them with bioactive compounds from plant and animal sources. Scientific evidence suggests these compounds can improve public health by potentially treating and preventing diseases, including cancer. This systematic review discusses advances in dairy product fortification with health-promoting compounds, highlighting their role in correcting nutritional deficiencies and reducing chronic disease risk. Innovative delivery systems are being developed to improve the stability and functionality of these compounds in fortified dairy products. Despite challenges in maintaining the physical, textural, and sensory qualities of dairy products, fortification is a promising public health strategy. The review calls for interdisciplinary research to better understand the bioavailability, effectiveness, and long-term health impacts of bioactive compounds in dairy foods. Such research could inform best practices and policy recommendations. Using dairy products as carriers for bioactive compounds can significantly improve nutritional status and reduce the global burden of chronic diseases, making it a strategic approach to public health nutrition. This review cautiously evaluates current evidence, particularly regarding chronic disease prevention, and emphasizes the need for further research on specific populations, such as children and the elderly.
  • Item
    Ileal Digestibility of Nitrogen and Amino Acids in Human Milk and an Infant Formula as Determined in Neonatal Minipiglets
    (Elsevier Inc. on behalf of American Society for Nutrition, 2023-04) Charton E; Henry G; Cahu A; Le Gouar Y; Dahirel P; Moughan PJ; Montoya CA; Bellanger A; Dupont D; Le Huërou-Luron I; Deglaire A
    BACKGROUND: Infant formula (IF) has to provide at least the same amount of amino acids (AAs) as human milk (HM). AA digestibility in HM and IF was not studied extensively, with no data available for tryptophan digestibility. OBJECTIVES: The present study aimed to measure the true ileal digestibility (TID) of total nitrogen and AAs in HM and IF to estimate AA bioavailability using Yucatan mini-piglets as an infant model. METHODS: Twenty-four 19-day-old piglets (males and females) received either HM or IF for 6 days or a protein-free diet for 3 days, with cobalt-EDTA as an indigestible marker. Diets were fed hourly over 6 h before euthanasia and digesta collection. Total N, AA, and marker contents in diets and digesta were measured to determine the TID. Unidimensional statistical analyses were conducted. RESULTS: Dietary N content was not different between HM and IF, while true protein was lower in HM (-4 g/L) due to a 7-fold higher non-protein N content in HM. The TID of total N was lower (P < 0.001) for HM (91.3 ± 1.24%) than for IF (98.0 ± 0.810%), while the TID of amino acid nitrogen (AAN) was not different (average of 97.4 ± 0.655%, P = 0.272). HM and IF had similar (P > 0.05) TID for most of the AAs including tryptophan (96.7 ± 0.950%, P = 0.079), except for some AAs (lysine, phenylalanine, threonine, valine, alanine, proline, and serine), with small significant difference (P < 0.05). The first limiting AA was the aromatic AAs, and the digestible indispensable AA score (DIAAS) was higher for HM (DIAASHM = 101) than for IF (DIAASIF = 83). CONCLUSION: HM, compared to IF, had a lower TID for total N only, whereas the TID of AAN and most AAs, including Trp, was high and similar. A larger proportion of non-protein N is transferred to the microbiota with HM, which is of physiological relevance, although this fraction is poorly considered for IF manufacturing.
  • Item
    Comparative bioavailability of vitamins in human foods sourced from animals and plants
    (Taylor and Francis Group, 2023-07-31) Chungchunlam SMS; Moughan PJ
    Vitamins are essential components of enzyme systems involved in normal growth and function. The quantitative estimation of the proportion of dietary vitamins, that is in a form available for utilization by the human body, is limited and fragmentary. This review provides the current state of knowledge on the bioavailability of thirteen vitamins and choline, to evaluate whether there are differences in vitamin bioavailability when human foods are sourced from animals or plants. The bioavailability of naturally occurring choline, vitamin D, vitamin E, and vitamin K in food awaits further studies. Animal-sourced foods are the almost exclusive natural sources of dietary vitamin B-12 (65% bioavailable) and preformed vitamin A retinol (74% bioavailable), and contain highly bioavailable biotin (89%), folate (67%), niacin (67%), pantothenic acid (80%), riboflavin (61%), thiamin (82%), and vitamin B-6 (83%). Plant-based foods are the main natural sources of vitamin C (76% bioavailable), provitamin A carotenoid β-carotene (15.6% bioavailable), riboflavin (65% bioavailable), thiamin (81% bioavailable), and vitamin K (16.5% bioavailable). The overview of studies showed that in general, vitamins in foods originating from animals are more bioavailable than vitamins in foods sourced from plants.