Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Leveraging Synteny to Generate Reference Genomes for Conservation: Assembling the Genomes of Hector's and Māui Dolphins(John Wiley and Sons Ltd, 2025-04-04) Alvarez-Costes S; Baker CS; Constantine R; Carroll EL; Guhlin J; Dutoit L; Ferreira S; Heimeier D; Gemmell NJ; Gillum J; Hamner RM; Rayment W; Roe W; Te Aikā B; Urban L; Alexander A; DeWoody AEscalating concern regarding the impacts of reduced genetic diversity on the conservation of endangered species has spurred efforts to obtain chromosome-level genomes through consortia such as the Vertebrate Genomes Project. However, assembling reference genomes for many threatened species remains challenging due to difficulties obtaining optimal input samples (e.g., fresh tissue, cell lines) that can characterise long-term conservation collections. Here, we present a pipeline that leverages genome synteny to construct high-quality genomes for species of conservation concern despite less-than-optimal samples and/or sequencing data, demonstrating its use on Hector's and Māui dolphins. These endemic New Zealand dolphins are threatened by human activities due to their coastal habitat and small population sizes. Hector's dolphins are classified as endangered by the IUCN, while the Māui dolphin is among the most critically endangered marine mammals. To assemble reference genomes for these dolphins, we created a pipeline combining de novo assembly tools with reference-guided techniques, utilising chromosome-level genomes of closely related species. The pipeline assembled highly contiguous chromosome-level genomes (scaffold N50: 110 MB, scaffold L50: 9, miniBUSCO completeness scores > 96.35%), despite non-optimal input tissue samples. We demonstrate that these genomes can provide insights relevant for conservation, including historical demography revealing long-term small population sizes, with subspecies divergence occurring ~20 kya, potentially linked to the Last Glacial Maximum. Māui dolphin heterozygosity was 40% lower than Hector's and comparable to other cetacean species noted for reduced genetic diversity. Through these exemplar genomes, we demonstrate that our pipeline can provide high-quality genomic resources to facilitate ongoing conservation genomics research.Item De-novo assembly of four rail (Aves: Rallidae) genomes: A resource for comparative genomics.(John Wiley and Sons Ltd, 2024-07-18) Gaspar J; Trewick SA; Gibb GCRails are a phenotypically diverse family of birds that includes 130 species and displays a wide distribution around the world. Here we present annotated genome assemblies for four rails from Aotearoa New Zealand: two native volant species, pūkeko Porphyrio melanotus and mioweka Gallirallus philippensis, and two endemic flightless species takahē Porphyrio hochstetteri and weka Gallirallus australis. Using the sequence read data, heterozygosity was found to be lowest in the endemic flightless species and this probably reflects their relatively small populations. The quality checks and comparison with other rallid genomes showed that the new assemblies were of good quality. This study significantly increases the number of available rallid genomes and will enable future genomic studies on the evolution of this family.
