Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item True Ileal Amino Acid Digestibility of Human Foods Classified According to Food Type as Determined in the Growing Pig(Elsevier Inc on behalf of the American Society for Nutrition, 2025-10-18) Hodgkinson SM; Stroebinger N; Stein HH; Fanelli NS; de Vries S; van der Wielen N; Hendriks WH; Moughan PJBackground: A Food and Agriculture Organization Expert Consultation recommended the use of digestible indispensable amino acid score (DIAAS) to evaluate protein quality of foods for humans. Calculation of DIAAS requires true ileal digestibility (TID) of amino acid (AA) values but currently insufficient data are available. Objectives: This study aims to generate in pigs TID of AA for a wide range of foods commonly consumed by humans and determine the range of differences in TID of AA among food types. Methods: A standardized protocol was followed to determine TID of AA in 97 foods across 3 laboratories. Female pigs (25–100 kg during study, n ≥ 6) received foods for 7 d following a Youden Square design with ileal digesta collected via T-cannula on days 6–7. Endogenous AA losses were determined by feeding a protein-free diet. Foods, diets, and digesta were analyzed for nitrogen, AA, reactive lysine, titanium and dry matter. Foods were categorized into food types with the degree of variation within each food type evaluated using descriptive statistics. Results: The TID (mean of AA) ranged from 0.247 (apples) to 0.988 (beef tenderloin). The median TID of AA was high (mean of AA > 0.90) for foods categorized as dairy products, eggs, fish and seafood, isolates and concentrates, meat, nuts, plant-based burgers, soy products and wheat products. Food categories with median TID < 0.80 were baked products, fruit, pulses and seeds, and wheat bran cereal, yeast, and zein. Food categories with low variations between foods were fish and seafood (1% units), dairy products (3% units), and eggs (5% units), whereas categories with the greatest variation were grains (18% units), vegetables (16% units), seeds (14% units), and fruit (12% units). There was considerable variation in TID for individual AA both within and among foods. Conclusions: The database with TID of AA of 97 foods generated by 3 laboratories using a standardized methodology can be utilized for protein quality evaluation.Item Protein Intake and Protein Quality Patterns in New Zealand Vegan Diets: An Observational Analysis Using Dynamic Time Warping(MDPI (Basel, Switzerland), 2025-05-26) Soh BXP; Vignes M; Smith NW; Von Hurst PR; McNabb WC; Hayes M; Naik ASBackground/Objectives: Inadequate intake of indispensable amino acids (IAAs) is a significant challenge in vegan diets. Since IAAs are not produced or stored over long durations in the human body, regular and balanced dietary protein consumption throughout the day is essential for metabolic function. The objective of this study is to investigate the variation in protein and IAA intake across 24 h among New Zealand vegans with time-series clustering, using Dynamic Time Warping (DTW). Methods: This data-driven approach objectively categorised vegan dietary data into distinct clusters for protein intake and protein quality analysis. Results: Total protein consumed per eating occasion (EO) was 11.1 g, with 93.5% of the cohort falling below the minimal threshold of 20 g of protein per EO. The mean protein intake for each EO in cluster 1 was 6.5 g, cluster 2 was 11.4 g and only cluster 3 was near the threshold at 19.0 g. IAA intake was highest in cluster 3, with lysine and leucine being 3× higher in cluster 3 than cluster 1. All EOs in cluster 1 were below the reference protein intake relative to body weight, closely followed by cluster 2 (91.5%), while cluster 3 comparatively had the lowest EOs under this reference (31.9%). Conclusions: DTW produced three distinct dietary patterns in the vegan cohort. Further exploration of plant protein combinations could inform recommendations to optimise protein quality in vegan diets.Item Editorial: Dietary protein for human health.(Frontiers Media S.A., 2025-01-15) Moughan PJ; Hendriks WH; Hodgkinson SM; Chungchunlam SMS; Lim WXJ; Mensink M; Stroebinger N; van der Wielen N; Pivovarova-Ramich OItem Protein Nutrition: Understanding Structure, Digestibility, and Bioavailability for Optimal Health.(MDPI (Basel, Switzerland), 2024-06-05) Ajomiwe N; Boland M; Phongthai S; Bagiyal M; Singh J; Kaur L; Wei ZThis review discusses different protein sources and their role in human nutrition, focusing on their structure, digestibility, and bioavailability. Plant-based proteins, such as those found in legumes, nuts, and seeds, may contain anti-nutritional factors that impact their bioavailability apart from structural and compositional differences from animal proteins. Animal proteins are generally highly digestible and nutritionally superior to plant proteins, with higher amino acid bioavailability. Alternative protein sources are also processed in different ways, which can alter their structure and nutritional value, which is also discussed.
