Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
20 results
Search Results
Item Exposure to drinking water trihalomethanes and nitrate and the risk of brain tumours in young people(Elsevier Inc, 2021-09) Zumel-Marne A; Castaño-Vinyals G; Alguacil J; Villanueva CM; Maule M; Gracia-Lavedan E; Momoli F; Krewski D; Mohipp C; Petridou E; Bouka E; Merletti F; Migliore E; Piro S; Ha M; 't Mannetje A; Eng A; Aragones N; Cardis EBrain tumours (BTs) are one of the most frequent tumour types in young people. We explored the association between tap water, exposure to trihalomethanes (THM) and nitrate and neuroepithelial BT risk in young people. Analysis of tap water consumption were based on 321 cases and 919 appendicitis controls (10-24 years old) from 6 of the 14 participating countries in the international MOBI-Kids case-control study (2010-2016). Available historical residential tap water concentrations of THMs and nitrate, available from 3 countries for 86 cases and 352 controls and 85 cases and 343 for nitrate, respectively, were modelled and combined with the study subjects' personal consumption patterns to estimate ingestion and residential exposure levels in the study population (both pre- and postnatal). The mean age of participants was 16.6 years old and 56% were male. The highest levels and widest ranges for THMs were found in Spain (residential and ingested) and Italy and in Korea for nitrate. There was no association between BT and the amount of tap water consumed and the showering/bathing frequency. Odds Ratios (ORs) for BT in relation to both pre- and postnatal residential and ingestion levels of THMs were systematically below 1 (OR = 0.37 (0.08-1.73)) for postnatal average residential THMs higher than 66 μg/L. For nitrate, all ORs were above 1 (OR = 1.80 (0.91-3.55)) for postnatal average residential nitrate levels higher than 8.5 mg/L, with a suggestion of a trend of increased risk of neuroepithelial BTs with increasing residential nitrate levels in tap water, which appeared stronger in early in life. This, to our knowledge, is the first study on this topic in young people. Further research is required to clarify the observed associations.Item Evaluating edge-of-range genetic patterns for tropical echinoderms, Acanthaster planci and Tripneustes gratilla, of the Kermadec Islands, southwest Pacific(ROSENSTIEL SCH MAR ATMOS SCI, 1/01/2014) Liggins L; Gleeson L; Riginos CEdge-of-range populations are often typified by patterns of low genetic diversity and high genetic differentiation relative to populations within the core of a species range. The "core-periphery hypothesis," also known as the "central-marginal hypothesis," predicts that these genetic patterns at the edge-of-range are a consequence of reduced population size and connectivity toward a species range periphery. It is unclear, however, how these expectations relate to high dispersal marine species that can conceivably maintain high abundance and high connectivity at their range edge. In the present study, we characterize the genetic patterns of two tropical echinoderm populations in the Kermadec Islands, the edge of their southwest Pacific range, and compare these genetic patterns to those from populations throughout their east Indian and Pacific ranges. We find that the populations of both Acanthaster planci (Linnaeus, 1758) and Tripneustes gratilla (Linnaeus, 1758) are represented by a single haplotype at the Kermadec Islands (based on mitochondrial cytochrome oxidase C subunit I). Such low genetic diversity concurs with the expectations of the "core-periphery hypothesis." Furthermore, the haplotypic composition of both populations suggests they have been founded by a small number of colonists with little subsequent immigration. Thus, local reproduction and self-recruitment appear to maintain these populations despite the ecologically marginal conditions of the Kermadec Islands for these tropical species. Understanding rates of self-recruitment vs reliance on connectivity with populations outside of the Kermadec Islands has implications for the persistence of these populations and range stability of these echinoderm species.© 2014 Rosenstiel School of Marine and Atmospheric Science of the University of Miami.Item The population genetic structure of the urchin Centrostephanus rodgersii in New Zealand with links to Australia(1/09/2021) Thomas LJ; Liggins L; Banks SC; Beheregaray LB; Liddy M; McCulloch GA; Waters JM; Carter L; Byrne M; Cumming RA; Lamare MDThe diadematid sea urchin Centrostephanus rodgersii occurs in Australia and New Zealand and has undergone recent southward range extension in Australia as a result of regional warming. Clarifying the population genetic structure of this species across its New Zealand range would allow a better understanding of recent and future mechanisms driving range changes in the species. Here, we use microsatellite DNA data to assess connectivity and genetic structure in 385 individuals from 14 locations across the Australian and New Zealand ranges of the species. We detected substantial genetic differentiation among C. rodgersii populations from Australia and New Zealand. However, the population from Port Stephens (located north of Newcastle), Australia, strongly clustered with New Zealand samples. This suggests that the New Zealand populations recently originated from this area, likely via larval transport in the Tasman Front flow that arises in this region. The weak population genetic structure and relatively low genetic diversity detected in New Zealand (global Fst = 0.0021) relative to Australia (global Fst = 0.0339) is consistent with the former population’s inferred history of recent climate-driven expansion. Population-level inbreeding is low in most populations, but were higher in New Zealand (global Fis = 0.0833) than in Australia (global Fis = 0.0202), suggesting that self-recruitment is playing an increasingly important role in the New Zealand region. Our results suggest that C. rodgersii is likely to spread southwards as ocean temperatures increase; therefore, it is crucial that researchers develop a clearer understanding of how New Zealand ecosystems will be reshaped by this species (and others) under climate change.Item Seascape features, rather than dispersal traits, predict spatial genetic patterns in co-distributed reef fishes(Wiley, 2015) Liggins L; Treml EA; Possingham HP; Riginos CAim: To determine which seascape features have shaped the spatial genetic patterns of coral reef fishes, and to identify common patterns among species related to dispersal traits [egg type and pelagic larval duration (PLD)]. Location: Indian and Pacific Oceans, including the Indo-Australian Archipelago. Methods: We sampled coral reef fishes with differing dispersal traits (Pomacentrus coelestis, Dascyllus trimaculatus, Hailchoeres hortulanus and Acanthurus triostegus) and characterized spatial (mtDNA) genetic patterns using AMOVA-clustering and measures of genetic differentiation. Similarity in the spatial genetic patterns among species was assessed using the congruence among distance matrices method and the seascape features associated with the genetic differentiation of each species were identified using multiple regression of distance matrices (MRDM) and stepwise model selection. Results: Similar spatial genetic patterns were found for P. coelestis and H. hortulanus, despite their differing egg type (benthic versus pelagic). MRDM indicated that geographical distance was underlying their correlated genetic patterns. Species with pelagic eggs (A. triostegus and H. hortulanus) also had correlated patterns of genetic differentiation (Dest); however, a common underlying seascape feature could not be inferred. Additionally, the common influence of the Torres Strait and the Lydekker/Weber's line was identified for the genetic patterns of differentiation for P. coelestis and A. triostegus, despite their differing dispersal traits, and the uncorrelated spatial genetic patterns of these species. Main conclusions: Our study demonstrates the value of a quantitative, hypothesis-testing framework in comparative phylogeography. We found that dispersal traits (egg type and PLD) did not predict which species had similar spatial genetic patterns or which seascape features were associated with these patterns. Furthermore, even in the absence of visually similar, or correlated spatial genetic patterns, our approach enabled us to identify seascape features that had a common influence on the spatial genetic patterns of co-distributed species.Item Functional beta diversity of New Zealand fishes: Characterising morphological turnover along depth and latitude gradients, with derivation of functional bioregions(1/09/2021) Myers EMV; Eme D; Liggins L; Harvey ES; Roberts CD; Anderson MJChanges in the functional structures of communities are rarely examined along multiple large-scale environmental gradients. Here, we describe patterns in functional beta diversity for New Zealand marine fishes versus depth and latitude, including broad-scale delineation of functional bioregions. We derived eight functional traits related to food acquisition and locomotion and calculated complementary indices of functional beta diversity for 144 species of marine ray-finned fishes occurring along large-scale depth (50–1200 m) and latitudinal gradients (29°–51°S) in the New Zealand Exclusive Economic Zone. We focused on a suite of morphological traits calculated directly from in situ Baited Remote Underwater Stereo-Video (stereo-BRUV) footage and museum specimens. We found that functional changes were primarily structured by depth followed by latitude, and that latitudinal functional turnover decreased with increasing depth. Functional turnover among cells increased with increasing depth distance, but this relationship plateaued for greater depth distances (>750 m). In contrast, functional turnover did not change significantly with increasing latitudinal distance at 700–1200 m depths. Shallow functional bioregions (50–100 m) were distinct at different latitudes, whereas deeper bioregions extended across broad latitudinal ranges. Fishes in shallow depths had a body shape conducive to efficient propulsion, while fishes in deeper depths were more elongated, enabling slow, energy-efficient locomotion, and had large eyes to enhance vision. Environmental filtering may be a primary driver of broad-scale patterns of functional beta diversity in the deep sea. Greater environmental homogeneity may lead to greater functional homogeneity across latitudinal gradients at deeper depths (700–1200 m). We suggest that communities living at depth may follow a ‘functional village hypothesis’, whereby similar key functional niches in fish communities may be maintained over large spatial scales.Item Soil properties impacting denitrifier community size, structure and activity in New Zealand dairy-grazed pastures(Copernicus Publications, 22/09/2017) Jha N; Saggar S; Giltrap D; Tillman R; Deslippe J; N/AAbstract. Denitrification is an anaerobic respiration process that is the primary contributor of the nitrous oxide (N O) produced from grassland soils. Our objective was to gain insight into the relationships between denitrifier community size, structure, and activity for a range of pasture soils. We collected 10 dairy pasture soils with contrasting soil textures, drainage classes, management strategies (effluent irrigation or non-irrigation), and geographic locations in New Zealand, and measured their physicochemical characteristics. We measured denitrifier abundance by quantitative polymerase chain reaction (qPCR) and assessed denitrifier diversity and community structure by terminal restriction fragment length polymorphism (T-RFLP) of the nitrite reductase (nirS, nirK) and N O reductase (nosZ) genes. We quantified denitrifier enzyme activity (DEA) using an acetylene inhibition technique. We investigated whether varied soil conditions lead to different denitrifier communities in soils, and if so, whether they are associated with different denitrification activities and are likely to generate different N 2 O emissions. Differences in the physicochemical characteristics of the soils were driven mainly by soil mineralogy and the management practices of the farms. We found that nirS and nirK communities were strongly structured along gradients of soil water and phosphorus (P) contents. By contrast, the size and structure of the nosZ community was unrelated to any of the measured soil characteristics. In soils with high water content, the richnesses and abundances of nirS, nirK, and nosZ genes were all significantly positively correlated with DEA. Our data suggest that management strategies to limit N O emissions through denitrification are likely to be most im- 2 2 2 portant for dairy farms on fertile or allophanic soils during wetter periods. Finally, our data suggest that new techniques that would selectively target nirS denitrifiers may be the most effective for limiting N O emissions through denitrification across a wide range of soil types.Item Estimating direct N2O emissions from sheep, beef, and deer grazed pastures in New Zealand hill country: accounting for the effect of land slope on N2O emission factors from urine and dung(Elsevier, 2015-03) Saggar SK; Giltrap DL; Davison R; Gibson R; de Klein CAM; Rollo M; Ettema P; Rys GNearly one-half of New Zealand's ruminant livestock graze on hill country pastures where spatial differences in soil conditions are highly variable and excretal deposition is influenced by pasture production, animal grazing and resting behaviour that impact the nitrous oxide (N2O) emission factor from excreta (EF3). New Zealand currently uses country-specific EF3 values for urine and dung of 0.01 and 0.0025, respectively, to estimate direct N2O emissions from excreta. These values have largely been developed from trials on flat pastoral land. The use of the same EF3 for hill pasture with medium and steep slopes has been recognised as a possible source of overestimation of N2O emissions in New Zealand. The objectives of this study were to develop and describe an approach that takes into account the effects of slope in estimating hill country N2O emissions from the dung and urine of ruminant animals (sheep, beef cattle, and deer) across different slope classes, and then compare these estimates with current New Zealand inventory estimates. We use New Zealand as a case study to determine the direct N2O emissions between 1990 and 2012 from sheep, beef cattle and deer excreta using updated estimates of EF3 for sloping land, the area of land in different slope classes by region and farm type, and a nutrient transfer model to allocate excretal-N to the different slope classes, and compare the changes between these hill pastures-specific and current inventory estimates. Our findings are significant - the proposed new methodology using New Zealand specific EFs calculated from a national series of hill country experiments resulted in 52% lower N2O estimates relative to using current inventory emission factors, for the period between 1990 and 2012 and reduces New Zealand's total national agricultural N2O greenhouse inventory estimates by 16%. The improved methodology is transparent, and complete, and has improved accuracy of emission estimates. On this basis, the improved methodology of estimating N2O emission is recommended for adoption where hill land grasslands are grazed by sheep, beef cattle and deer.Item Geostatistical determination of soil noise and soil phosphorus spatial variability(Elsevier Masson, 28/09/2017) Kaul TMC; Grafton MCEThis research studies the effect of stratifying soil samples to try and find a suitable depth to establish a geospatial relationship for a practical soil sampling grid in New Zealand hill country. Cores were collected from 200 predetermined sites in grids at two trial sites at “Patitapu” hill country farm in theWairarapa, New Zealand. Trial 1 was a 200 m 100 m grid located in a gently undulating paddock. Trial 2 was a 220 m 80 m grid located on a moderately sloped paddock. Each grid had cores taken at intervals of 5 m, 10 m, or 20 m. Core sites were mapped out prior to going into the field; these points were found using a Leica Geo Systems GS15 (real time kinematic GPS) and marked with pigtail pegs and spray-paint on the ground. Cores were taken using a 50 mm-diameter soil core sampler. Cores were cut into three sections according to depth: A—0–30 mm, B—30–75 mm, and C—75–150 mm. Olsen P lab results were obtained for half of the total 1400 samples due to financial constraints. The results indicate that there was a significant decrease in variability from Section A to Section B for both trials. Section B and C for Trial 1 had similar variability, whereas there was another significant drop in variability from Section B to C in Trial 2. Measuring samples below the top 3 cm appeared to effectively reduce noise when sampled from 3 to 15 cm. However, measuring from 7.5 cm to 15 cm on the slope in Trial 2 reduced variability so much that all results were almost identical, which may mean that there is no measurable representation of plant available P. The reduction in noise by removing the top 3 cm of soil samples is significant for improving current soil nutrient testing methods by allowing better geospatial predictions for whole paddock soil nutrient variability mappingItem Can the commons be temporary? The role of transitional commoning in post-quake Christchurch(3/04/2019) Dombroski K; Diprose G; Boles IIn recent work on commons and commoning, scholars have argued that we might delink the practice of commoning from property ownership, while paying attention to modes of governance that enable long-term commons to emerge and be sustained. Yet commoning can also occur as a temporary practice, in between and around other forms of use. In this article we reflect on the transitional commoning practices and projects enabled by the Christchurch post-earthquake organisation Life in Vacant Spaces, which emerged to connect and mediate between landowners of vacant inner city demolition sites and temporary creative or entrepreneurial users. While these commons are often framed as transitional or temporary, we argue they have ongoing reverberations changing how people and local government in Christchurch approach common use. Using the cases of the physical space of the Victoria Street site “The Commons” and the virtual space of the Life in Vacant Spaces website, we show how temporary commoning projects can create and sustain the conditions of possibility required for nurturing commoner subjectivities. Thus despite their impermanence, temporary commoning projects provide a useful counter to more dominant forms of urban development and planning premised on property ownership and “permanent” timeframes, in that just as the physical space of the city being opened to commoning possibilities, so too are the expectations and dispositions of the city’s inhabitants, planners, and developers.Item Return of the ghosts of dispersal past: Historical spread and contemporary gene flow in the blue sea star Linckia laevigata(ROSENSTIEL SCH MAR ATMOS SCI, 1/01/2014) Crandall ED; Treml EA; Liggins L; Gleeson L; Yasuda N; Barber PH; Wörheide G; Riginos CMarine animals inhabiting the Indian and Pacific oceans have some of the most extensive species ranges in the world, sometimes spanning over half the globe. These Indo-Pacific species present a challenge for study with both geographic scope and sampling density as limiting factors. Here, we augment and aggregate phylogeographic sampling of the iconic blue sea star, Linckia laevigata Linnaeus, 1758, and present one of the most geographically comprehensive genetic studies of any Indo-Pacific species to date, sequencing 392 base pairs of mitochondrial COI from 791 individuals from 38 locations spanning over 14,000 km. We first use a permutation based multiple-regression approach to simultaneously evaluate the relative influence of historical and contemporary gene flow together with putative barriers to dispersal. We then use a discrete diffusion model of phylogeography to infer the historical migration and colonization routes most likely used by L. laevigata across the Indo-Pacific. We show that estimates of genetic structure have a stronger correlation to geographic distances than to "oceanographic" distances from a biophysical model of larval dispersal, reminding us that population genetic estimates of gene flow and genetic structure are often shaped by historical processes. While the diffusion model was equivocal about the location of the mitochondrial most recent common ancestor (MRC A), we show that gene flow has generally proceeded in a step-wise manner across the Indian and Pacific oceans. We do not find support for previously described barriers at the Sunda Shelf and within Cenderwasih Bay. Rather, the strongest genetic disjunction is found to the east of Cenderwasih Bay along northern New Guinea. These results underscore the importance of comprehensive range-wide sampling in marine phylogeography.© 2014 Rosenstiel School of Marine and Atmospheric Science of the University of Miami.
