Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Unique rumen micromorphology and microbiota-metabolite interactions: features and strategies for Tibetan sheep adaptation to the plateau.(Frontiers Media S.A., 2024-10-09) Chen Q; Sha Y; Liu X; He Y; Chen X; Yang W; Gao M; Huang W; Wang J; He J; Wang L; Zhang LThe rumen microbiota-a symbiont to its host and consists of critical functional substances-plays a vital role in the animal body and represents a new perspective in the study of adaptive evolution in animals. This study used Slide Viewer slicing analysis system, gas chromatography, RT-qPCR and other technologies, as well as 16S and metabolomics determination methods, to measure and analyze the microstructure of rumen epithelium, rumen fermentation parameters, rumen transport genes, rumen microbiota and metabolites in Tibetan sheep and Hu sheep. The results indicate that the rumen nipple height and cuticle thickness of Tibetan sheep are significantly greater than those of Hu sheep (p < 0.01) and that the digestion and absorption of forage are greater. The levels of carbohydrate metabolism, lipid metabolism, and protein turnover were increased in Tibetan sheep, which enabled them to ferment efficiently, utilize forage, and absorb metabolic volatile fatty acids (VFAs). Tibetan sheep rumen metabolites are related to immune function and energy metabolism, which regulate rumen growth and development and gastrointestinal homeostasis. Thus, compared with Hu sheep, Tibetan sheep have more rumen papilla and cuticle corneum, and the synergistic effect of the microbiota and its metabolites is a characteristic and strategy for adapting to high-altitude environments.Item Soil Microbial Community Composition and Diversity Are Insusceptible to Nitrogen Addition in a Semi-Arid Grassland in Northwestern China(MDPI (Basel, Switzerland), 2023-10-11) Tuo H; Li M; Ghanizadeh H; Huang J; Yang M; Wang Z; Wang Y; Tian H; Ye F; Li W; Monokrousos NHuman-caused nitrogen (N) deposition is a global environmental issue that can change community composition, functions, and ecosystem services. N deposition affects plants, soil, and microorganisms regionally and is linked to ecosystem, soil, and climate factors. We examined the effects of six N addition levels (0, 2.34 g, 4.67, 9.34,18.68, and 37.35 g N m−2 yr−1) on aboveground vegetation, surface soil properties, and microbial community. Alterations in microbial communities in response to N addition were monitored using 16S rRNA (16S ribosomal ribonucleic acid, where S donates a sedimentation coefficient) and ITS (internal transcribed spacer) regions for bacterial and fungal communities, respectively. N addition positively affected aboveground vegetation traits, such as biomass and community weighted mean of leaf nitrogen. N addition also limited phosphorus (P) availability and altered the microbial community assembly process from random processes to deterministic processes. The microbial community diversity and composition, however, were not sensitive to N addition. Partial least squares structural equation models showed that the composition of bacterial communities was mainly driven by the composition of plant communities and total nitrogen, while the composition of fungal communities was driven by soil pH and community weighted mean of leaf nitrogen. Taken together, the results of this research improved our understanding of the response of grassland ecosystems to N deposition and provided a theoretical basis for grassland utilization and management under N deposition.
